Suppr超能文献

基于神经网络和分层强化学习的移动机器人路径规划

The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning.

作者信息

Yu Jinglun, Su Yuancheng, Liao Yifan

机构信息

Chongqing University-University of Cincinnati Joint Co-op Institute, Chongqing University, Chongqing, China.

出版信息

Front Neurorobot. 2020 Oct 2;14:63. doi: 10.3389/fnbot.2020.00063. eCollection 2020.

Abstract

Existing mobile robots cannot complete some functions. To solve these problems, which include autonomous learning in path planning, the slow convergence of path planning, and planned paths that are not smooth, it is possible to utilize neural networks to enable to the robot to perceive the environment and perform feature extraction, which enables them to have a fitness of environment to state action function. By mapping the current state of these actions through Hierarchical Reinforcement Learning (HRL), the needs of mobile robots are met. It is possible to construct a path planning model for mobile robots based on neural networks and HRL. In this article, the proposed algorithm is compared with different algorithms in path planning. It underwent a performance evaluation to obtain an optimal learning algorithm system. The optimal algorithm system was tested in different environments and scenarios to obtain optimal learning conditions, thereby verifying the effectiveness of the proposed algorithm. Deep Deterministic Policy Gradient (DDPG), a path planning algorithm for mobile robots based on neural networks and hierarchical reinforcement learning, performed better in all aspects than other algorithms. Specifically, when compared with Double Deep Q-Learning (DDQN), DDPG has a shorter path planning time and a reduced number of path steps. When introducing an influence value, this algorithm shortens the convergence time by 91% compared with the Q-learning algorithm and improves the smoothness of the planned path by 79%. The algorithm has a good generalization effect in different scenarios. These results have significance for research on guiding, the precise positioning, and path planning of mobile robots.

摘要

现有的移动机器人无法完成某些功能。为了解决这些问题,包括路径规划中的自主学习、路径规划收敛缓慢以及规划路径不顺畅等问题,可以利用神经网络使机器人能够感知环境并进行特征提取,从而使其具有环境对状态动作函数的适应性。通过分层强化学习(HRL)映射这些动作的当前状态,可以满足移动机器人的需求。基于神经网络和HRL为移动机器人构建路径规划模型是可行的。在本文中,将所提出的算法与路径规划中的不同算法进行了比较。对其进行了性能评估以获得最优学习算法系统。在不同环境和场景下对最优算法系统进行测试以获得最优学习条件,从而验证所提算法的有效性。深度确定性策略梯度(DDPG),一种基于神经网络和分层强化学习的移动机器人路径规划算法,在各方面的表现均优于其他算法。具体而言,与双深度Q学习(DDQN)相比,DDPG的路径规划时间更短,路径步数减少。当引入影响值时,该算法与Q学习算法相比收敛时间缩短了91%,规划路径的平滑度提高了79%。该算法在不同场景下具有良好的泛化效果。这些结果对移动机器人的导航、精确定位和路径规划研究具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf96/7561669/a8d5e2a8b3aa/fnbot-14-00063-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验