Suppr超能文献

基于块自适应雷尼熵的非平稳信号去噪

Block-Adaptive Rényi Entropy-Based Denoising for Non-Stationary Signals.

作者信息

Saulig Nicoletta, Lerga Jonatan, Miličić Siniša, Tomasović Željka

机构信息

Faculty of Engineering, Juraj Dobrila University of Pula, 52100 Pula, Croatia.

Faulty of Engineering, University of Rijeka, 51000 Rijeka, Croatia.

出版信息

Sensors (Basel). 2022 Oct 28;22(21):8251. doi: 10.3390/s22218251.

Abstract

This paper approaches the problem of signal denoising in time-variable noise conditions. Non-stationary noise results in variable degradation of the signal's useful information content over time. In order to maximize the correct recovery of the useful part of the signal, this paper proposes a denoising method that uses a criterion based on amplitude segmentation and local Rényi entropy estimation which are limited over short time blocks of the signal spectrogram. Local estimation of the signal features reduces the denoising problem to the stationary noise case. Results, presented for synthetic and real data, show consistently better performance gained by the proposed adaptive method compared to denoising driven by global criteria.

摘要

本文探讨了时变噪声条件下的信号去噪问题。非平稳噪声会导致信号有用信息内容随时间发生可变程度的退化。为了最大程度地正确恢复信号的有用部分,本文提出了一种去噪方法,该方法使用基于幅度分割和局部雷尼熵估计的准则,这些准则在信号频谱图的短时间块上是有限的。对信号特征进行局部估计将去噪问题简化为平稳噪声情况。针对合成数据和真实数据给出的结果表明,与由全局准则驱动的去噪相比,所提出的自适应方法始终具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/477c/9656295/3fe05061f5e9/sensors-22-08251-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验