Suppr超能文献

时频分布中瞬时频率和群延迟的自动估计方法及其在 EEG seizure 信号分析中的应用。

Method for Automatic Estimation of Instantaneous Frequency and Group Delay in Time-Frequency Distributions with Application in EEG Seizure Signals Analysis.

机构信息

Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia.

Faculty of Maritime Studies, University of Rijeka, 51000 Rijeka, Croatia.

出版信息

Sensors (Basel). 2023 May 11;23(10):4680. doi: 10.3390/s23104680.

Abstract

Instantaneous frequency (IF) is commonly used in the analysis of electroencephalogram (EEG) signals to detect oscillatory-type seizures. However, IF cannot be used to analyze seizures that appear as spikes. In this paper, we present a novel method for the automatic estimation of IF and group delay (GD) in order to detect seizures with both spike and oscillatory characteristics. Unlike previous methods that use IF alone, the proposed method utilizes information obtained from localized Rényi entropies (LREs) to generate a binary map that automatically identifies regions requiring a different estimation strategy. The method combines IF estimation algorithms for multicomponent signals with time and frequency support information to improve signal ridge estimation in the time-frequency distribution (TFD). Our experimental results indicate the superiority of the proposed combined IF and GD estimation approach over the IF estimation alone, without requiring any prior knowledge about the input signal. The LRE-based mean squared error and mean absolute error metrics showed improvements of up to 95.70% and 86.79%, respectively, for synthetic signals and up to 46.45% and 36.61% for real-life EEG seizure signals.

摘要

瞬时频率 (IF) 常用于分析脑电图 (EEG) 信号,以检测振荡型癫痫发作。然而,IF 不能用于分析表现为尖峰的癫痫发作。在本文中,我们提出了一种新的方法,用于自动估计 IF 和群延迟 (GD),以检测具有尖峰和振荡特征的癫痫发作。与以前仅使用 IF 的方法不同,所提出的方法利用从局部 Renyi 熵 (LRE) 获得的信息生成二进制图,自动识别需要不同估计策略的区域。该方法将多分量信号的 IF 估计算法与时间和频率支持信息相结合,以提高时频分布 (TFD) 中的信号脊估计。我们的实验结果表明,与单独使用 IF 估计相比,所提出的联合 IF 和 GD 估计方法具有优越性,而无需对输入信号有任何先验知识。基于 LRE 的均方误差和平均绝对误差指标分别对合成信号提高了 95.70%和 86.79%,对真实 EEG 癫痫发作信号提高了 46.45%和 36.61%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be20/10221086/81a396017cbf/sensors-23-04680-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验