Suppr超能文献

使用优化的 Kaneda-Lucas-Tomasi 跟踪器和基于 Denavit-Hartenberg 的运动学模型捕获具身对话代理的会话手势。

Capturing Conversational Gestures for Embodied Conversational Agents Using an Optimized Kaneda-Lucas-Tomasi Tracker and Denavit-Hartenberg-Based Kinematic Model.

机构信息

Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška c. 46, 2000 Maribor, Slovenia.

出版信息

Sensors (Basel). 2022 Oct 29;22(21):8318. doi: 10.3390/s22218318.

Abstract

In order to recreate viable and human-like conversational responses, the artificial entity, i.e., an embodied conversational agent, must express correlated speech (verbal) and gestures (non-verbal) responses in spoken social interaction. Most of the existing frameworks focus on intent planning and behavior planning. The realization, however, is left to a limited set of static 3D representations of conversational expressions. In addition to functional and semantic synchrony between verbal and non-verbal signals, the final believability of the displayed expression is sculpted by the physical realization of non-verbal expressions. A major challenge of most conversational systems capable of reproducing gestures is the diversity in expressiveness. In this paper, we propose a method for capturing gestures automatically from videos and transforming them into 3D representations stored as part of the conversational agent's repository of motor skills. The main advantage of the proposed method is ensuring the naturalness of the embodied conversational agent's gestures, which results in a higher quality of human-computer interaction. The method is based on a Kanade-Lucas-Tomasi tracker, a Savitzky-Golay filter, a Denavit-Hartenberg-based kinematic model and the EVA framework. Furthermore, we designed an objective method based on cosine similarity instead of a subjective evaluation of synthesized movement. The proposed method resulted in a 96% similarity.

摘要

为了重新创建可行且类似人类的对话响应,人工智能实体,即具身对话代理,必须在口语社交互动中表达相关的言语(口头)和非言语(非口头)响应。现有的大多数框架都侧重于意图规划和行为规划。然而,实现却留给了有限的一组静态的会话表达 3D 表示。除了言语和非言语信号之间的功能和语义同步外,非言语表达的物理实现还塑造了显示表达的最终可信度。大多数能够再现手势的对话系统的主要挑战是表达的多样性。在本文中,我们提出了一种从视频中自动捕捉手势并将其转换为存储为会话代理运动技能库一部分的 3D 表示的方法。所提出方法的主要优势在于确保具身对话代理的手势的自然性,从而提高人机交互的质量。该方法基于 Kanade-Lucas-Tomasi 跟踪器、Savitzky-Golay 滤波器、基于 Denavit-Hartenberg 的运动学模型和 EVA 框架。此外,我们设计了一种基于余弦相似度的客观方法,而不是对合成运动的主观评估。所提出的方法产生了 96%的相似度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5288/9656321/f378fd3b68d5/sensors-22-08318-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验