Suppr超能文献

车辆品牌和型号识别框架——一个新的大规模数据集和一个高效的双分支两阶段深度学习架构。

Framework for Vehicle Make and Model Recognition-A New Large-Scale Dataset and an Efficient Two-Branch-Two-Stage Deep Learning Architecture.

机构信息

Department of Electronics and Informatics, Vrije Universiteit Brussel, 1050 Brussels, Belgium.

Macq S.A./N.V., 1140 Brussels, Belgium.

出版信息

Sensors (Basel). 2022 Nov 2;22(21):8439. doi: 10.3390/s22218439.

Abstract

In recent years, Vehicle Make and Model Recognition (VMMR) has attracted a lot of attention as it plays a crucial role in Intelligent Transportation Systems (ITS). Accurate and efficient VMMR systems are required in real-world applications including intelligent surveillance and autonomous driving. The paper introduces a new large-scale dataset and a novel deep learning paradigm for VMMR. A new large-scale dataset dubbed Diverse large-scale VMM (DVMM) is proposed collecting image-samples with the most popular vehicle brands operating in Europe. A novel VMMR framework is proposed which follows a two-branch architecture performing make and model recognition respectively. A two-stage training procedure and a novel decision module are proposed to process the make and model predictions and compute the final model prediction. In addition, a novel metric based on the true positive rate is proposed to compare classification confusion of the proposed 2B-2S and the baseline methods. A complex experimental validation is carried out, demonstrating the generality, diversity, and practicality of the proposed DVMM dataset. The experimental results show that the proposed framework provides 93.95% accuracy over the more diverse DVMM dataset and 95.85% accuracy over traditional VMMR datasets. The proposed two-branch approach outperforms the conventional one-branch approach for VMMR over small-, medium-, and large-scale datasets by providing lower vehicle model confusion and reduced inter-make ambiguity. The paper demonstrates the advantages of the proposed two-branch VMMR paradigm in terms of robustness and lower confusion relative to single-branch designs.

摘要

近年来,车辆品牌和型号识别(VMMR)作为智能交通系统(ITS)的关键组成部分,引起了广泛关注。在智能监控和自动驾驶等实际应用中,需要准确高效的 VMMR 系统。本文提出了一种新的大规模数据集和用于 VMMR 的新型深度学习范例。提出了一个新的大规模数据集,称为多样化大规模 VMM(DVMM),该数据集收集了在欧洲运营的最受欢迎的汽车品牌的图像样本。提出了一种新的 VMMR 框架,该框架采用了分别进行品牌和型号识别的双分支架构。提出了两阶段训练过程和新的决策模块,以处理品牌和型号预测并计算最终的模型预测。此外,还提出了一种基于真正阳性率的新指标,用于比较所提出的 2B-2S 和基线方法的分类混淆。进行了复杂的实验验证,证明了所提出的 DVMM 数据集的通用性、多样性和实用性。实验结果表明,所提出的框架在更具多样性的 DVMM 数据集上提供了 93.95%的准确率,在传统的 VMMR 数据集上提供了 95.85%的准确率。所提出的双分支方法在小、中、大规模数据集上都优于传统的单分支方法,提供了更低的车辆型号混淆和减少的品牌间歧义。本文证明了所提出的双分支 VMMR 范例在鲁棒性和降低混淆方面相对于单分支设计的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b030/9654883/35c26bef8d18/sensors-22-08439-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验