Suppr超能文献

基于凸性缺陷特征的非合作航天器单目姿态估计

Monocular Pose Estimation of an Uncooperative Spacecraft Using Convexity Defect Features.

作者信息

Han Haeyoon, Kim Hanik, Bang Hyochoong

机构信息

Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.

出版信息

Sensors (Basel). 2022 Nov 6;22(21):8541. doi: 10.3390/s22218541.

Abstract

Spacecraft relative pose estimation for an uncooperative spacecraft is challenging because the target spacecraft neither provides sensor information to a chaser spacecraft nor contains markers that assist vision-based navigation. Moreover, the chaser does not have prior pose estimates when initiating the pose estimation. This paper proposes a new monocular pose estimation algorithm that addresses these issues in pose initialization situations for a known but uncooperative target spacecraft. The proposed algorithm finds convexity defect features from a target image and uses them as cues for matching feature points on the image to the points on the known target model. Based on this novel method for model matching, it estimates a pose by solving the PnP problem. Pose estimation simulations are carried out in three test scenarios, and each assesses the estimation accuracy and initialization performance by varying relative attitudes and distances. The simulation results show that the algorithm can estimate the poses of spacecraft models when a solar panel length and the number of solar panels are changed. Furthermore, a scenario considering the surface property of the spacecraft emphasizes that robust feature detection is essential for accurate pose estimation. This algorithm can be used for proximity operations with a known but uncooperative target spacecraft. Specifically, one of the main applications is relative navigation for on-orbit servicing.

摘要

对于非合作目标航天器的相对姿态估计具有挑战性,因为目标航天器既不向追踪航天器提供传感器信息,也不包含有助于基于视觉导航的标记。此外,追踪器在启动姿态估计时没有先验姿态估计值。本文提出了一种新的单目姿态估计算法,该算法在已知但非合作目标航天器的姿态初始化情况下解决了这些问题。所提出的算法从目标图像中找到凸性缺陷特征,并将其用作将图像上的特征点与已知目标模型上的点进行匹配的线索。基于这种新颖的模型匹配方法,通过解决PnP问题来估计姿态。在三个测试场景中进行了姿态估计模拟,每个场景通过改变相对姿态和距离来评估估计精度和初始化性能。模拟结果表明,当太阳能板长度和太阳能板数量发生变化时,该算法能够估计航天器模型的姿态。此外,一个考虑航天器表面特性的场景强调了鲁棒特征检测对于精确姿态估计至关重要。该算法可用于与已知但非合作目标航天器的接近操作。具体而言,主要应用之一是在轨服务的相对导航。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68d5/9655075/d6c3403632bb/sensors-22-08541-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验