Suppr超能文献

Multiparty quantum anonymous voting with discrete modulated coherent states and an optical frequency comb.

作者信息

Ruan Xinchao, Zhang Hang, Mao Yiyu, Wang Zhipeng, Zuo Zhiyue, Guo Ying

出版信息

Opt Express. 2022 Nov 7;30(23):41204-41218. doi: 10.1364/OE.471000.

Abstract

A key challenge for quantum information science is to realize large-scale, precisely controllable, practical systems for multiparty secure communications. Recently, Guidry etal. [Nat. Photonics16, 52 (2022)10.1038/s41566-021-00901-z] have investigated the quantum optics of a Kerr-based optical frequency comb (OFC), which lays out the way for OFC acting as a quantum resource to realize a low-cost and stable multiparty continuous-variable quantum information processing. In this work, we propose a distributed quantum anonymous voting (DQAV) protocol based on discrete modulated coherent states, in which a Kerr-based OFC serves as the resource to generate multi-frequency quantum signals for multiparty voting. We consider both the single-selection and multiple-selection ballot scenarios, and design the phase compensation method for the OFC-based protocol. Voting security is ensured by the basic laws of quantum mechanics, while voting anonymity is achieved by the random assignment of different frequency sources and the homogeneity of the quantum operations taken on the same voting choice. Numerical analysis calculates the secure voting distance over the thermal-lossy channel, showing the advancement of the proposed protocol under multiparty and multivalued voting tasks.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验