在1064nm激光照射下实现卓越的近红外二区荧光成像和热疗的分子低聚和供体工程策略
Molecular Oligomerization and Donor Engineering Strategies for Achieving Superior NIR-II Fluorescence Imaging and Thermotherapy under 1064 nm Laser Irradiation.
作者信息
Liu Jiawei, Xiong Yanwei, Gao Yicong, Xu Xingpeng, Chen Kai, Shen Qingming, Huang Wei, Fan Quli, Wang Qi
机构信息
State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
出版信息
Small. 2023 Jan;19(1):e2205640. doi: 10.1002/smll.202205640. Epub 2022 Nov 11.
An enormous challenge still exists for designing molecules with the second near-infrared (NIR-II, 1000-1700 nm) window absorption, NIR-II fluorescence emission, and batch-to-batch reproducibility, which is the premise for high-performance NIR-II phototheranostics. Although organic small molecules and polymers have been largely explored for phototheranostics, it is difficult to satisfy the above three elements simultaneously. In this work, molecular oligomerization (the general structure is S-D-A-D'-A-D-S) and donor engineering (changing the donor linker D') strategies are applied to design phototheranostic agents. Such strategies are proved to be efficient in adjusting molecular configuration and energy level, affecting the optical and thermal properties. Three oligomers (O-T, O-DT, and O-Q) are further prepared into water-soluble nanoparticles (NPs). Particularly, the O-T NPs exhibit a higher molar extinction coefficient at 1064 nm (≈4.3-fold of O-DT NPs and ≈4.8-fold of O-Q NPs). Furthermore, the O-T NPs show the highest NIR-II fluorescence brightness and heating capacity (PCE = 73%) among the three NPs under 1064 nm laser irradiation and served as agents for NIR-II imaging guided in vivo photothermal therapy. Overall, by using molecular oligomerization and donor engineering strategies, a powerful example of constructing high-performance NIR-II phototheranostics for clinical translation is given.
对于设计具有第二近红外(NIR-II,1000 - 1700纳米)窗口吸收、NIR-II荧光发射以及批次间重现性的分子而言,仍然存在巨大挑战,而这是高性能NIR-II光诊疗的前提。尽管有机小分子和聚合物已在很大程度上被用于光诊疗研究,但很难同时满足上述三个要素。在这项工作中,应用了分子低聚(一般结构为S-D-A-D'-A-D-S)和供体工程(改变供体连接体D')策略来设计光诊疗剂。事实证明,这些策略在调节分子构型和能级、影响光学和热学性质方面是有效的。进一步将三种低聚物(O-T、O-DT和O-Q)制备成水溶性纳米颗粒(NPs)。特别地,O-T NPs在1064纳米处表现出更高的摩尔消光系数(约为O-DT NPs的4.3倍和约为O-Q NPs的4.8倍)。此外,在1064纳米激光照射下,O-T NPs在三种NPs中表现出最高的NIR-II荧光亮度和加热能力(光热转换效率 = 73%),并用作体内光热治疗的NIR-II成像引导剂。总体而言,通过使用分子低聚和供体工程策略,给出了一个构建用于临床转化的高性能NIR-II光诊疗剂的有力实例。