Lu Feng, Li Lili, Zhang Meng, Yu Chengwu, Pan Yonghui, Cheng Fangfang, Hu Wenbo, Lu Xiaomei, Wang Qi, Fan Quli
State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China.
Chem Sci. 2024 Jul 4;15(30):12086-12097. doi: 10.1039/d4sc01609b. eCollection 2024 Jul 31.
Hypoxia featured in malignant tumors and the short lifespan of photo-induced reactive oxygen species (ROS) are two major issues that limit the efficiency of photodynamic therapy (PDT) in oncotherapy. Developing efficient type-I photosensitizers with long-term ˙OH generation ability provides a possible solution. Herein, a semiconducting polymer-based photosensitizer PCPDTBT was found to generate O, ˙OH, and HO through type-I/II PDT paths. After encapsulation within a mesoporous silica matrix, the NIR-II fluorescence and ROS generation are enhanced by 3-4 times compared with the traditional phase transfer method, which can be attributed to the excited-state lifetime being prolonged by one order of magnitude, resulting from restricted nonradiative decay channels, as confirmed by femtosecond spectroscopy. Notably, HO production reaches 15.8 μM min under a 730 nm laser (80 mW cm). Further adsorption of Fe ions on mesoporous silica not only improves the loading capacity of the chemotherapy drug doxorubicin but also triggers a Fenton reaction with photo-generated HO to produce ˙OH continuously after the termination of laser irradiation. Thus, semiconducting polymer-based nanocomposites enables NIR-II fluorescence imaging guided persistent PDT under hypoxic conditions. This work provides a promising paradigm to fabricate persistent photodynamic therapy platforms for hypoxia-tolerant phototheranostics.
恶性肿瘤中的缺氧以及光诱导活性氧(ROS)的短寿命是限制光动力疗法(PDT)在肿瘤治疗中效率的两个主要问题。开发具有长期产生·OH能力的高效I型光敏剂提供了一种可能的解决方案。在此,发现一种基于半导体聚合物的光敏剂PCPDTBT通过I/II型PDT途径产生O、·OH和HO。封装在介孔二氧化硅基质中后,与传统的相转移方法相比,近红外二区(NIR-II)荧光和ROS生成增强了3至4倍,这可归因于飞秒光谱证实的受限非辐射衰变通道使激发态寿命延长了一个数量级。值得注意的是,在730nm激光(80mW/cm²)下,HO的产生量达到15.8μM/min。在介孔二氧化硅上进一步吸附铁离子不仅提高了化疗药物阿霉素的负载能力,而且在激光照射终止后引发与光生HO的芬顿反应以持续产生·OH。因此,基于半导体聚合物的纳米复合材料能够在缺氧条件下实现近红外二区荧光成像引导的持续PDT。这项工作为制造用于耐缺氧光热诊疗的持续光动力治疗平台提供了一个有前景的范例。