Zhang Ning, Liu Kun, Zhang Haibai, Wang Xiaofei, Zhou Yuhao, He Wenxiu, Cui Jinlong, Sun Juncai
Institute of Materials and Technology, Dalian Maritime University, Dalian, 116026, China.
Institute of Chemistry and Chemical Engineering, Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science & Technology, Baotou, 014010, China.
Small. 2023 Jan;19(1):e2204867. doi: 10.1002/smll.202204867. Epub 2022 Nov 11.
To break the stereotype that silica can only be reduced via a magnesiothermic and aluminothermic method at low-temperature condition, the novel strategy for converting silica to SiO using disproportionation effect of SnO generated via low-temperature pyrolysis coreduction reaction between SnO and rice husk is proposed, without any raw materials waste and environmental hazards. After the low-temperature pyrolysis reaction, SnO @C/SiO composites with unique structure (Sn/SnO dispersed on the surface and within pores of biochar as well as SiO residing in the interior) are obtained due to the exclusive biological properties of rice husk. Such unique structural features render SnO @C/SiO composites with an excellent talent for repairing the damaged structure and the highly electrochemical storage ability (530.8 mAh g at 10 A g after 7500 cycles). Furthermore, assembled LiFePO ||SnO -50@C/SiO full cell displays a high discharge capacity of 463.7 mAh g after 100 cycles at 0.2 A g . The Li transport mechanism is revealed by density functional theory calculations. This work provides references and ideas for green, efficient, and high-value to reduce SiO , especially in biomass, which also avoids the waste of raw materials in the production process, and becomes an essential step in sustainable development.
为了打破二氧化硅只能在低温条件下通过镁热法和铝热法还原的刻板印象,提出了一种利用氧化锡与稻壳低温热解共还原反应产生的氧化锡的歧化效应将二氧化硅转化为一氧化硅的新策略,该过程无任何原料浪费和环境危害。低温热解反应后,由于稻壳独特的生物学特性,得到了具有独特结构的氧化锡@碳/二氧化硅复合材料(锡/氧化锡分散在生物炭的表面和孔隙内,二氧化硅存在于内部)。这种独特的结构特征使氧化锡@碳/二氧化硅复合材料具有修复受损结构的优异能力和高电化学存储能力(在10 A g下循环7500次后为530.8 mAh g)。此外,组装的磷酸铁锂||氧化锡-50@碳/二氧化硅全电池在0.2 A g下循环100次后显示出463.7 mAh g的高放电容量。通过密度泛函理论计算揭示了锂传输机制。这项工作为绿色、高效、高价值地还原二氧化硅提供了参考和思路,特别是在生物质领域,这也避免了生产过程中原料的浪费,成为可持续发展的重要一步。