Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.
J Physiol. 2023 Jan;601(1):227-244. doi: 10.1113/JP283176. Epub 2022 Nov 29.
External expiratory flow limitation (EFLe) can be applied in healthy subjects to mimic the effects of chronic obstructive pulmonary disease during exercise. At maximal exercise intensity, EFLe leads to exercise intolerance owing to respiratory pump dysfunction limiting venous return. We quantified blood shifts between body compartments to determine whether such effects can be observed during submaximal exercise, when the load on the respiratory system is milder. Ten healthy men (25.2 ± 3.2 years of age, 177.3 ± 5.4 cm in height and weighing 67.4 ± 5.8 kg) exercised at 100 W (∼40% of maximal oxygen uptake) while breathing spontaneously (CTRL) or with EFLe. We measured respiratory dynamics with optoelectronic plethysmography, oesophageal (P ) and gastric (P ) pressures with balloon catheters, and blood shifting between body compartments with double body plethysmography. During exercise, EFLe resulted in the following changes: (i) greater intrabreath blood shifts between the trunk and the extremities [518 ± 221 (EFLe) vs. 224 ± 60 ml (CTRL); P < 0.001] associated with lower P during inspiration (r = 0.53, P < 0.001) and higher P during expiration (r = 0.29, P < 0.024); and (ii) a progressive pooling of blood in the trunk over time (∼700 ml after 3 min of exercise; P < 0.05), explained by a predominant effect of lower inspiratory P (r = 0.54, P < 0.001) over that of increased P . It follows that during submaximal exercise, EFLe amplifies the respiratory pump mechanism, with a prevailing contribution from lower inspiratory P over increased expiratory P , drawing blood into the trunk. Whether these results can be replicated in chronic obstructive pulmonary disease patients remains to be determined. KEY POINTS: External expiratory flow limitation (EFLe) can be applied in healthy subjects to mimic the effects of chronic obstructive pulmonary disease and safely study the mechanisms of exercise intolerance associated with the disease. At maximal exercise intensity with EFLe, exercise intolerance results from high expiratory pressures altering the respiratory pump mechanism and limiting venous return. We used double body plethysmography to quantify blood shifting between the trunk and the extremities and to examine whether the same effects occur with EFLe at submaximal exercise intensity, where the increase in expiratory pressures is milder. Our data show that during submaximal exercise, EFLe amplifies the respiratory pump mechanism, each breath producing greater blood displacements between the trunk and the extremities, with a prevailing effect from lower inspiratory intrathoracic pressure progressively drawing blood into the trunk. These results help us to understand the haemodynamic effects of respiratory pressures during submaximal exercise with expiratory flow restriction.
外部呼气流量限制(EFLe)可应用于健康受试者,以模拟运动期间慢性阻塞性肺疾病的影响。在最大运动强度下,EFLe 导致呼吸泵功能障碍,限制静脉回流,从而导致运动不耐受。我们量化了身体各腔室之间的血液转移,以确定在呼吸系统负荷较轻的亚最大运动期间是否可以观察到这种影响。10 名健康男性(年龄 25.2±3.2 岁,身高 177.3±5.4cm,体重 67.4±5.8kg)以 100W(约最大摄氧量的 40%)进行运动,同时进行自主呼吸(CTRL)或 EFLe。我们使用光电体积描记法测量呼吸动力学,使用球囊导管测量食管(P )和胃(P )压力,使用双体描记法测量身体各腔室之间的血液转移。在运动过程中,EFLe 导致以下变化:(i)呼吸之间躯干和四肢之间的血液转移增加[518±221(EFLe)比 224±60ml(CTRL);P<0.001],与吸气时较低的 P 相关(r=0.53,P<0.001)和呼气时较高的 P (r=0.29,P<0.024);(ii)随着时间的推移,躯干中的血液逐渐积聚(运动 3 分钟后约 700ml;P<0.05),这主要是由于吸气时较低的 P (r=0.54,P<0.001)而不是增加的 P 引起的。因此,在亚最大运动期间,EFLe 放大了呼吸泵机制,吸气时较低的 P 比呼气时增加的 P 具有更大的影响,将血液吸入躯干。EFLe 在慢性阻塞性肺疾病患者中是否能产生相同的效果仍有待确定。 关键点:外部呼气流量限制(EFLe)可应用于健康受试者,以模拟慢性阻塞性肺疾病的影响,并安全地研究与疾病相关的运动不耐受的机制。在最大运动强度下使用 EFLe 时,运动不耐受是由于呼气压力升高改变呼吸泵机制并限制静脉回流引起的。我们使用双体描记法来量化躯干和四肢之间的血液转移,并研究在亚最大运动强度下 EFLe 是否会产生相同的效果,在这种情况下,呼气压力的增加较温和。我们的数据表明,在亚最大运动期间,EFLe 放大了呼吸泵机制,每一次呼吸都会导致躯干和四肢之间更大的血液移位,吸气时较低的胸腔内压力具有主要影响,逐渐将血液吸入躯干。这些结果有助于我们理解在呼气流量受限的亚最大运动期间呼吸压力对血液动力学的影响。