Suppr超能文献

氧化还原液流电池:电解质化学突破热力学极限。

Redox Flow Batteries: Electrolyte Chemistries Unlock the Thermodynamic Limits.

作者信息

Chen Ruiyong

机构信息

Materials Innovation Factory Department of Chemistry, University of Liverpool, Liverpool, L7 3NY, United Kingdom.

Korea Institute of Science and Technology (KIST) Europe Campus E7 1, 66123, Saarbrücken, Germany.

出版信息

Chem Asian J. 2023 Jan 3;18(1):e202201024. doi: 10.1002/asia.202201024. Epub 2022 Nov 25.

Abstract

Redox flow batteries (RFBs) represent a promising approach to enabling the widespread integration of intermittent renewable energy. Rapid developments in RFB materials and electrolyte chemistries are needed to meet the cost and performance targets. In this review, special emphasis is given to the recent advances how electrolyte design could circumvent the main thermodynamic restrictions of aqueous electrolytes. The recent success of aqueous electrolyte chemistries has been demonstrated by extending the electrochemical stability window of water beyond the thermodynamic limit, the operating temperature window beyond the thermodynamic freezing temperature of water and crystallization of redox-active materials, and the aqueous solubility beyond the thermodynamic solubility limit. They would open new avenues towards enhanced energy storage and all-climate adaptability. Depending on the constituent, concentration and condition of electrolytes, the performance gain has been correlated to the specific solvation environment, interactions among species and ion association at a molecular level.

摘要

氧化还原液流电池(RFBs)是实现间歇性可再生能源广泛整合的一种有前景的方法。需要在RFB材料和电解质化学方面取得快速进展,以满足成本和性能目标。在本综述中,特别强调了电解质设计如何规避水性电解质主要热力学限制方面的最新进展。水性电解质化学的最新成功体现在将水的电化学稳定性窗口扩展到热力学极限之外、将工作温度窗口扩展到水的热力学凝固温度和氧化还原活性材料结晶温度之外,以及将水溶性扩展到热力学溶解度极限之外。它们将为增强储能和全气候适应性开辟新途径。根据电解质的成分、浓度和条件,性能提升与特定的溶剂化环境、物种间相互作用以及分子水平上的离子缔合相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验