Australian Institute of Marine Science (AIMS), Townsville, Queensland 4810, Australia; CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland 4067, Australia.
Australian Institute of Marine Science (AIMS), Townsville, Queensland 4810, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia.
J Hazard Mater. 2023 Feb 5;443(Pt A):130218. doi: 10.1016/j.jhazmat.2022.130218. Epub 2022 Oct 20.
Although significant headway has been achieved regarding method harmonisation for the analysis of microplastics, analysis and interpretation of control data has largely been overlooked. There is currently no consensus on the best method to utilise data generated from controls, and consequently many methods are arbitrarily employed. This study identified 6 commonly implemented strategies: a) No correction; b) Subtraction; c) Mean Subtraction; d) Spectral Similarity; e) Limits of detection/ limits of quantification (LOD/LOQ) or f) Statistical analysis, of which many variations are possible. Here, the 6 core methods and 45 variant methods (n = 51) thereof were used to correct a dummy dataset using control data. Most of the methods tested were too inflexible to account for the inherent variation present in microplastic data. Only 7 of the 51 methods tested (six LOD/LOQ methods and one statistical method) showed promise, removing between 96.3 % and 100 % of the contamination data from the dummy set. The remaining 44 methods resulted in deficient corrections for background contamination due to the heterogeneity of microplastics. These methods should be avoided in the future to avoid skewed results, especially in low abundance samples. Overall, LOD/LOQ methods or statistical analysis comparing means are recommended for future use in microplastic studies.
虽然在分析微塑料的方法协调方面已经取得了重大进展,但对对照数据的分析和解释在很大程度上被忽视了。目前,对于如何利用对照数据生成的最佳方法还没有达成共识,因此许多方法都是任意采用的。本研究确定了 6 种常用的策略:a) 不校正;b) 扣除;c) 均值扣除;d) 光谱相似性;e) 检出限/定量限(LOD/LOQ)或 f) 统计分析,其中许多方法都有多种变化形式。在这里,使用对照数据对模拟数据集进行校正,使用了 6 种核心方法和 45 种变体方法(n=51)。测试的大多数方法都过于僵化,无法解释微塑料数据中存在的固有变化。在测试的 51 种方法中,只有 7 种(6 种 LOD/LOQ 方法和 1 种统计方法)显示出了前景,从模拟集中去除了 96.3%至 100%的污染数据。其余 44 种方法由于微塑料的异质性,导致背景污染的校正不足。在未来,为了避免结果出现偏差,特别是在低丰度样本中,应避免使用这些方法。总的来说,LOD/LOQ 方法或比较平均值的统计分析方法建议在未来的微塑料研究中使用。