Suppr超能文献

不可压缩和可压缩纳维-斯托克斯方程到分数阶时间和多分形空间的推广。

Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space.

作者信息

Kavvas M Levent, Ercan Ali

机构信息

Hydrologic Research Laboratory and J. Amorocho Hydraulics Laboratory, Department of Civil and Environmental Engineering, University of California, Davis, CA, 95616, USA.

J. Amorocho Hydraulics Laboratory, Department of Civil and Environmental Engineering, University of California, Davis, CA, 95616, USA.

出版信息

Sci Rep. 2022 Nov 11;12(1):19337. doi: 10.1038/s41598-022-20911-3.

Abstract

This study develops the governing equations of unsteady multi-dimensional incompressible and compressible flow in fractional time and multi-fractional space. When their fractional powers in time and in multi-fractional space are specified to unit integer values, the developed fractional equations of continuity and momentum for incompressible and compressible fluid flow reduce to the classical Navier-Stokes equations. As such, these fractional governing equations for fluid flow may be interpreted as generalizations of the classical Navier-Stokes equations. The derived governing equations of fluid flow in fractional differentiation framework herein are nonlocal in time and space. Therefore, they can quantify the effects of initial and boundary conditions better than the classical Navier-Stokes equations. For the frictionless flow conditions, the corresponding fractional governing equations were also developed as a special case of the fractional governing equations of incompressible flow. When their derivative fractional powers are specified to unit integers, these equations are shown to reduce to the classical Euler equations. The numerical simulations are also performed to investigate the merits of the proposed fractional governing equations. It is shown that the developed equations are capable of simulating anomalous sub- and super-diffusion due to their nonlocal behavior in time and space.

摘要

本研究推导了分数阶时间和多分形空间中不稳定多维不可压缩和可压缩流动的控制方程。当它们在时间和多分形空间中的分数幂被指定为单位整数值时,所推导的不可压缩和可压缩流体流动的分数阶连续性方程和动量方程就简化为经典的纳维-斯托克斯方程。因此,这些流体流动的分数阶控制方程可以被解释为经典纳维-斯托克斯方程的推广。本文在分数阶微分框架下推导的流体流动控制方程在时间和空间上是非局部的。因此,它们比经典的纳维-斯托克斯方程能更好地量化初始条件和边界条件的影响。对于无摩擦流动条件,相应的分数阶控制方程也作为不可压缩流动分数阶控制方程的一种特殊情况被推导出来。当它们的导数分数幂被指定为单位整数时,这些方程被证明可简化为经典的欧拉方程。还进行了数值模拟以研究所提出的分数阶控制方程的优点。结果表明,所推导的方程由于其在时间和空间上的非局部行为,能够模拟反常的亚扩散和超扩散。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7556/9652326/806efb7d51b5/41598_2022_20911_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验