Ramon Charlotte, Traversi Florian, Bürer Céline, Froese D Sean, Stelling Jörg
Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland.
Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
J Inherit Metab Dis. 2023 May;46(3):421-435. doi: 10.1002/jimd.12575. Epub 2022 Nov 23.
Methylmalonyl-coenzyme A (CoA) mutase (MMUT)-type methylmalonic aciduria is a rare inherited metabolic disease caused by the loss of function of the MMUT enzyme. Patients develop symptoms resembling those of primary mitochondrial disorders, but the underlying causes of mitochondrial dysfunction remain unclear. Here, we examined environmental and genetic interactions in MMUT deficiency using a combination of computational modeling and cellular models to decipher pathways interacting with MMUT. Immortalized fibroblast (hTERT BJ5ta) MMUT-KO (MUTKO) clones displayed a mild mitochondrial impairment in standard glucose-based medium, but they did not to show increased reliance on respiratory metabolism nor reduced growth or viability. Consistently, our modeling predicted MUTKO specific growth phenotypes only for lower extracellular glutamine concentrations. Indeed, two of three MMUT-deficient BJ5ta cell lines showed a reduced viability in glutamine-free medium. Further, growth on 183 different carbon and nitrogen substrates identified increased NADH (nicotinamide adenine dinucleotide) metabolism of BJ5ta and HEK293 MUTKO cells compared with controls on purine- and glutamine-based substrates. With this knowledge, our modeling predicted 13 reactions interacting with MMUT that potentiate an effect on growth, primarily those of secondary oxidation of propionyl-CoA, oxidative phosphorylation and oxygen diffusion. Of these, we validated 3-hydroxyisobutytyl-CoA hydrolase (HIBCH) in the secondary propionyl-CoA oxidation pathway. Altogether, these results suggest compensation for the loss of MMUT function by increasing anaplerosis through glutamine or by diverting flux away from MMUT through the secondary propionyl-CoA oxidation pathway, which may have therapeutic relevance.
甲基丙二酰辅酶A(CoA)变位酶(MMUT)型甲基丙二酸尿症是一种罕见的遗传性代谢疾病,由MMUT酶功能丧失引起。患者出现类似于原发性线粒体疾病的症状,但线粒体功能障碍的根本原因仍不清楚。在这里,我们结合计算模型和细胞模型研究了MMUT缺乏症中的环境与基因相互作用,以破译与MMUT相互作用的途径。永生化成纤维细胞(hTERT BJ5ta)MMUT基因敲除(MUTKO)克隆在基于标准葡萄糖的培养基中表现出轻度线粒体损伤,但未显示出对呼吸代谢的依赖性增加,也未出现生长或活力降低的情况。一致地,我们的模型仅预测了较低细胞外谷氨酰胺浓度下MUTKO的特定生长表型。事实上,三个MMUT缺陷的BJ5ta细胞系中有两个在无谷氨酰胺培养基中活力降低。此外,在183种不同的碳源和氮源底物上生长的结果表明,与基于嘌呤和谷氨酰胺的底物上的对照相比,BJ5ta和HEK293 MUTKO细胞的NADH(烟酰胺腺嘌呤二核苷酸)代谢增加。基于这些认识,我们的模型预测了13个与MMUT相互作用的反应,这些反应增强了对生长的影响,主要是丙酰辅酶A的二次氧化、氧化磷酸化和氧扩散的反应。其中,我们验证了二次丙酰辅酶A氧化途径中的3-羟基异丁酰辅酶A水解酶(HIBCH)。总之,这些结果表明,通过增加谷氨酰胺的回补反应或通过二次丙酰辅酶A氧化途径使通量从MMUT转移,可补偿MMUT功能的丧失,这可能具有治疗意义。