Gaertner Zachary, Azcorra Maite, Dombeck Daniel A, Awatramani Rajeshwar
Dept of Neurology, Northwestern University, Chicago, IL 60611, United States of America; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
Dept of Neurobiology, Northwestern University, Evanston, IL 60201, United States of America; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
Neurobiol Dis. 2022 Dec;175:105925. doi: 10.1016/j.nbd.2022.105925. Epub 2022 Nov 11.
As the ability to capture single-cell expression profiles has grown in recent years, neuroscientists studying a wide gamut of brain regions have discovered remarkable heterogeneity within seemingly related populations (Saunders et al., 2018a; Zeisel et al., 2015). These "molecular subtypes" have been demonstrated even within brain nuclei expressing the same neurotransmitter (Saunders et al., 2018a; Poulin et al., 2020; Ren et al., 2019; Okaty et al., 2020). Recently, dopamine (DA) neurons of the substantia nigra pars compacta (SNc) and adjacent ventral tegmental area (VTA) have been revealed to be diverse not only when comparing between these two dopaminergic nuclei, but within them, and with the distribution of identified subtypes often agnostic to traditional neuroanatomical boundaries (Saunders et al., 2018a; Hook et al., 2018; Kramer et al., 2018; La Manno et al., 2016; Poulin et al., 2014; Tiklova et al., 2019; Poulin et al., 2018). Such molecularly defined subpopulations have been the subject of several recent studies. Investigations of these subtypes have ultimately unveiled many distinctive properties across several domains, such as their axonal projections and functional properties (Poulin et al., 2018; Wu et al., 2019; Pereira Luppi et al., 2021; Evans et al., 2017; Evans et al., 2020). These key differences between subtypes have begun to corroborate the biological relevance of DA neuron taxonomic schemes. We hypothesize that these putative molecular subtypes, with their distinctive circuits, could shed light on the wide variety of dopamine-related symptoms observed across several diseases including depression, chronic pain, addiction, and Parkinson's Disease. While it is difficult to reconcile how a single neurotransmitter can be involved in so many seemingly unrelated phenotypes, one solution could be the existence of several individual dopaminergic pathways serving different functions, with molecular subtypes serving as distinct nodes for these pathways. Indeed, this conceptual framework is already the dogma for anatomically distinct DA pathways, including the mesocortical, mesolimbic and mesostriatal pathways (Bjorklund & Dunnett, 2007). Here, we discuss our existing knowledge of DA neuron subtypes and attempt to provide a roadmap for how their distinctive properties can provide novel insights into the motor symptoms of Parkinson's disease (PD) (Fig. 1A). By exploring the differences between molecular subtypes and correlating this to their relative degeneration within the SNc, we may gain a deeper understanding of the cell-intrinsic mechanisms underlying why some DA neurons degenerate more than others in PD. Similarly, by mapping the inputs, projections, and functions of individual subtypes, we may better understand their individual roles in the circuit-level dysfunction of dopaminergic diseases.
近年来,随着单细胞表达谱捕捉能力的提升,研究众多脑区的神经科学家发现,看似相关的细胞群体中存在显著的异质性(桑德斯等人,2018年a;蔡塞尔等人,2015年)。即使在表达相同神经递质的脑核内,也已证实存在这些“分子亚型”(桑德斯等人,2018年a; Poulin等人,2020年;任等人,2019年;奥凯蒂等人,2020年)。最近发现,黑质致密部(SNc)和相邻的腹侧被盖区(VTA)的多巴胺(DA)神经元不仅在这两个多巴胺能核之间存在差异,在每个核内部也存在差异,而且已识别亚型的分布往往与传统神经解剖边界无关(桑德斯等人,2018年a;胡克等人,2018年;克莱默等人,2018年;拉曼诺等人,2016年; Poulin等人,2014年;蒂克洛娃等人,2019年; Poulin等人,2018年)。这种分子定义的亚群已成为近期多项研究的主题。对这些亚型的研究最终揭示了多个领域的许多独特特性,比如它们的轴突投射和功能特性( Poulin等人,2018年;吴等人,2019年;佩雷拉·卢皮等人,2021年;埃文斯等人,2017年;埃文斯等人,2020年)。亚型之间的这些关键差异已开始证实DA神经元分类方案的生物学相关性。我们推测,这些假定的分子亚型及其独特的回路,可能有助于阐明在包括抑郁症、慢性疼痛、成瘾和帕金森病在内的多种疾病中观察到的各种与多巴胺相关的症状。虽然很难解释单一神经递质如何参与如此多看似不相关的表型,但一种可能的解决方案是存在几个具有不同功能的独立多巴胺能通路,分子亚型作为这些通路的不同节点。事实上,这个概念框架已经是解剖学上不同的DA通路(包括中皮质、中边缘和中纹状体通路)的既定观念(比约克隆德和邓内特,2007年)。在此,我们讨论我们对DA神经元亚型的现有认识,并试图提供一个路线图,说明它们的独特特性如何能为帕金森病(PD)的运动症状提供新的见解(图1A)。通过探索分子亚型之间的差异,并将其与它们在SNc内的相对退化相关联,我们可能会更深入地了解为什么在PD中一些DA神经元比其他神经元退化得更多的细胞内在机制。同样,通过绘制单个亚型的输入、投射和功能图,我们可能会更好地理解它们在多巴胺能疾病回路水平功能障碍中的个体作用。