Goebl April M, Kane Nolan C, Doak Daniel F, Rieseberg Loren H, Ostevik Kate L
Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA.
Environmental Studies Programme, University of Colorado, Boulder, Colorado, USA.
Mol Ecol. 2024 Feb;33(4):e16785. doi: 10.1111/mec.16785. Epub 2022 Nov 29.
Conspecific populations living in adjacent but contrasting microenvironments represent excellent systems for studying natural selection. These systems are valuable because gene flow is expected to force genetic homogeneity except at loci experiencing divergent selection. A history of reciprocal transplant and common garden studies in such systems, and a growing number of genomic studies, have contributed to understanding how selection operates in natural populations. While selection can vary across different fitness components and life stages, few studies have investigated how this ultimately affects allele frequencies and the maintenance of divergence between populations. Here, we study two sunflower ecotypes in distinct, adjacent habitats by combining demographic models with genome-wide sequence data to estimate fitness and allele frequency change at multiple life stages. This framework allows us to estimate that only local ecotypes are likely to experience positive population growth (λ > 1) and that the maintenance of divergent adaptation appears to be mediated via habitat- and life stage-specific selection. We identify genetic variation, significantly driven by loci in chromosomal inversions, associated with different life history strategies in neighbouring ecotypes that optimize different fitness components and may contribute to the maintenance of distinct ecotypes.
生活在相邻但截然不同的微环境中的同种群体是研究自然选择的绝佳系统。这些系统很有价值,因为除了在经历趋异选择的基因座外,基因流预计会促使基因同质化。在这类系统中进行的相互移植和共同园圃研究的历史,以及越来越多的基因组研究,都有助于理解自然种群中选择是如何运作的。虽然选择在不同的适合度成分和生命阶段可能会有所不同,但很少有研究调查这最终如何影响等位基因频率以及种群间差异的维持。在这里,我们通过将种群统计学模型与全基因组序列数据相结合,研究了处于不同相邻栖息地的两种向日葵生态型,以估计多个生命阶段的适合度和等位基因频率变化。这个框架使我们能够估计只有本地生态型可能经历正种群增长(λ>1),并且趋异适应的维持似乎是通过栖息地和生命阶段特异性选择介导的。我们识别出由染色体倒位中的基因座显著驱动的遗传变异,这些变异与相邻生态型中不同的生活史策略相关,这些策略优化了不同的适合度成分,并可能有助于维持不同的生态型。