Suppr超能文献

基于萤火虫迁移算子的帝王蝶优化算法在诊断糖尿病视网膜病变中的最优特征选择

Optimal Feature Selection for Diagnosing Diabetic Retinopathy Using FireFly Migration Operator-Based Monarch Butterfly Optimization.

机构信息

Y.S.R. Engineering College of Yogi Vemana University, Korrapadu Road, Proddatur, Andhra Pradesh 516360, India.

出版信息

Crit Rev Biomed Eng. 2022;50(2):21-37. doi: 10.1615/CritRevBiomedEng.2022041571.

Abstract

In recent years, diabetic retinopathy (DR) needs to be focused with the intention of developing accurate and effective approaches by accomplishing the existing challenges in the traditional models. With this objective, this paper aims to introduce an effective diagnosis system by utilizing retinal fundus images. The implementation of this diagnosis model incorporates 4 stages like (i) preprocessing, (ii) blood vessel segmentation, (iii) feature extraction, as well as (iv) classification. Originally, the median filter as well as contrast limited adaptive histogram equalization (CLAHE) help to preprocess the image. Moreover, the Fuzzy C Mean (FCM) thresholding is applied for blood vessel segmentation, which generates stochastic clustering of pixels to obtain enhanced threshold values. Further, feature extraction is accomplished by utilizing gray-level run-length matrix (GLRM), local, and morphological transformation-based features. Furthermore, a deep learning (DL) model known as convolutional neural network (CNN) is employed for the diagnosis or classification purpose. As a main novelty, this paper introduces an optimal feature selection as well as classification model. Further, the feature selection is done optimally by FireFly Migration Operator-based Monarch Butterfly Optimization (FM-MBO) which hybridized of the monarch butterfly optimization (MBO) and fire fly (FF) algorithms as the entire adopted extracted features attain higher feature length. Moreover, the proposed FM-MBO algorithm helps for optimizing the count of CNN's convolutional neurons to further improve the performance accuracy. At the end, the enhanced outcomes of the adopted diagnostic scheme are validated via a valuable comparative examination in terms of significant performance measures.

摘要

近年来,糖尿病视网膜病变(DR)需要引起关注,目的是通过克服传统模型中的现有挑战,开发准确有效的方法。为此,本文旨在引入一种基于视网膜眼底图像的有效诊断系统。该诊断模型的实现包括四个阶段:(i)预处理,(ii)血管分割,(iii)特征提取以及(iv)分类。最初,中值滤波器和对比度受限自适应直方图均衡(CLAHE)有助于对图像进行预处理。此外,采用模糊 C 均值(FCM)阈值法进行血管分割,生成像素的随机聚类以获得增强的阈值。进一步,利用灰度游程长度矩阵(GLRM)、局部和形态变换特征进行特征提取。此外,还采用卷积神经网络(CNN)等深度学习(DL)模型进行诊断或分类。作为主要的创新点,本文引入了一种最优的特征选择和分类模型。此外,通过基于萤火虫迁移算子的帝王蝶优化(FM-MBO)进行最优特征选择,混合了帝王蝶优化(MBO)和萤火虫(FF)算法,因为所采用的全部提取特征的特征长度更高。此外,所提出的 FM-MBO 算法有助于优化 CNN 的卷积神经元数量,从而进一步提高性能准确性。最后,通过在重要性能指标方面进行有价值的比较评估,验证了所采用的诊断方案的改进结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验