Bio-Medical Imaging Laboratory (BIOMIL), Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar, Assam, 788010, India.
Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane, QLD, 4006, Australia.
Phys Eng Sci Med. 2021 Dec;44(4):1351-1366. doi: 10.1007/s13246-021-01073-4. Epub 2021 Nov 8.
Diabetic retinopathy is a microvascular complication of diabetes mellitus that develops over time. Diabetic retinopathy is one of the retinal disorders. Early detection of diabetic retinopathy reduces the chances of permanent vision loss. However, the identification and regular diagnosis of diabetic retinopathy is a time-consuming task and requires expert ophthalmologists and radiologists. In addition, an automatic diabetic retinopathy detection technique is necessary for real-time applications to facilitate and minimize potential human errors. Therefore, we propose an ensemble deep neural network and a novel four-step feature selection technique in this paper. In the first step, the preprocessed entropy images improve the quality of the retinal features. Second, the features are extracted using a deep ensemble model include InceptionV3, ResNet101, and Vgg19 from the retinal fundus images. Then, these features are combined to create an ample feature space. To reduce the feature space, we propose four-step feature selection techniques: minimum redundancy, maximum relevance, Chi-Square, ReliefF, and F test for selecting efficient features. Further, appropriate features are chosen from the majority voting techniques to reduce the computational complexity. Finally, the standard machine learning classifier, support vector machines, is used in diabetic retinopathy classification. The proposed method is tested on Kaggle, MESSIDOR-2, and IDRiD databases, available publicly. The proposed algorithm provided an accuracy of 97.78%, a sensitivity of 97.6%, and a specificity of 99.3%, using top 300 features, which are better than other state-of-the-art methods.
糖尿病性视网膜病变是糖尿病的一种微血管并发症,随着时间的推移而发展。糖尿病性视网膜病变是视网膜疾病之一。早期发现糖尿病性视网膜病变可降低永久性视力丧失的几率。然而,糖尿病性视网膜病变的识别和定期诊断是一项耗时的任务,需要专家眼科医生和放射科医生。此外,需要一种自动糖尿病性视网膜病变检测技术用于实时应用,以方便和最小化潜在的人为错误。因此,我们在本文中提出了一种集成深度神经网络和一种新颖的四步特征选择技术。在第一步中,预处理的熵图像可改善视网膜特征的质量。其次,使用包括 InceptionV3、ResNet101 和 Vgg19 在内的深度集成模型从眼底图像中提取特征。然后,将这些特征组合起来创建一个丰富的特征空间。为了减少特征空间,我们提出了四步特征选择技术:最小冗余、最大相关性、卡方、ReliefF 和 F 检验,以选择有效特征。此外,还从多数投票技术中选择适当的特征以降低计算复杂度。最后,使用标准的机器学习分类器支持向量机进行糖尿病性视网膜病变分类。该方法在 Kaggle、MESSIDOR-2 和 IDRiD 公共数据库上进行了测试。该算法使用前 300 个特征提供了 97.78%的准确率、97.6%的灵敏度和 99.3%的特异性,优于其他最先进的方法。