Laboratory of Materials-Elaboration- Properties-Applications (LMEPA), University of MSBY Jijel, PB98 OuledAissa, Jijel, 18000, Algeria; Department of Engineering Proceeding, Faculty of Sciences and Technology, University MSBY Jijel, PB98 Ouled Aissa, Jijel, 18000, Algeria.
Laboratoire de Génie Mécanique et Matériaux, Faculté de Technologie, Université de Skikda, 21000, Algeria; Département de Technologie, Université de Skikda, 21000, Skikda, Algeria.
J Environ Manage. 2023 Jan 15;326(Pt A):116742. doi: 10.1016/j.jenvman.2022.116742. Epub 2022 Nov 12.
The use of biosorption as a strategy for lowering the amount of pollution caused by heavy metals is particularly encouraging. In this investigation, a low-cost and efficient biosorbent, Inula Viscosa leaves were used to remove zinc ions (Zn) from synthetic wastewater. A Fourier transform infrared spectroscopy experiment, a scanning electron microscopy experiment, and an energy dispersive X-ray spectroscopy experiment were used to describe the support. Several different physicochemical factors, such as the beginning pH value, contact duration, initial zinc concentration, biosorbent dose, and temperature, were investigated in this study. When the Langmuir, Freundlich, Temkin, Toth, and Redlich-Peterson models were used to match the data from the Inula Viscosa leaves biosorption isotherms, it was found that the biosorption isotherms correspond most closely with the Langmuir isotherm. On the other hand, the kinetic biosorption process was investigated using pseudo-first-order, pseudo-second-order (PS2), and Elovich models. The PS2 model was the one that provided the most accurate description of the biosorption kinetics. The thermodynamics process shows the spontaneous and endothermic character of Zn sorption on Inula Viscosa leaves, which also entails the participation of physical interactions. In addition, the atom-in-molecule analysis, density functional theory, and the conductor like screening model for real solvents, were used to investigate the relationship that exists between quantum calculations and experimental outcomes.
利用生物吸附作为降低重金属污染的策略尤其令人鼓舞。在这项研究中,采用了一种低成本、高效的生物吸附剂——旋覆花叶片,用于从合成废水中去除锌离子(Zn)。傅里叶变换红外光谱实验、扫描电子显微镜实验和能量色散 X 射线光谱实验用于描述支撑物。本研究考察了不同的物理化学因素,如起始 pH 值、接触时间、初始锌浓度、生物吸附剂剂量和温度。当使用朗缪尔、弗伦德利希、特姆金、托特和 Redlich-Peterson 模型来匹配旋覆花叶片生物吸附等温线的数据时,发现生物吸附等温线与朗缪尔等温线最为吻合。另一方面,使用拟一级、拟二级(PS2)和 Elovich 模型研究了动力学吸附过程。PS2 模型最准确地描述了生物吸附动力学。热力学过程表明,Zn 在旋覆花叶片上的吸附是自发和吸热的,这也需要物理相互作用的参与。此外,还使用原子在分子中的分析、密度泛函理论和真实溶剂的导体相似屏蔽模型,研究了量子计算与实验结果之间的关系。