Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA.
Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
Nat Commun. 2022 Nov 14;13(1):6947. doi: 10.1038/s41467-022-34729-0.
Block copolymers spontaneously self-assemble into well-defined nanoscale morphologies. Yet equilibrium assembly gives rise to a limited set of structures. Non-equilibrium strategies can, in principle, expand diversity by exploiting self-assembly's responsive nature. In this vein, we developed a pathway priming strategy combining control of thin film initial configurations and ordering history. We sequentially coat distinct materials to form prescribed initial states, and use thermal annealing to evolve these manifestly non-equilibrium states through the assembly landscape, traversing normally inaccessible transient structures. We explore the enormous associated hyperspace, spanning processing (annealing temperature and time), material (composition and molecular weight), and layering (thickness and order) dimensions. We demonstrate a library of exotic non-native morphologies, including vertically-oriented perforated lamellae, aqueduct structures (vertical lamellar walls with substrate-pinned perforations), parapets (crenellated lamellae), and networks of crisscrossing lamellae. This enhanced structural control can be used to modify functional properties, including accessing regimes that surpass their equilibrium analogs.
嵌段共聚物自发自组装成具有明确定义的纳米级形态。然而,平衡组装导致了有限的结构集。非平衡策略原则上可以通过利用自组装的响应性质来扩展多样性。在这方面,我们开发了一种途径引发策略,将控制薄膜初始构型和有序历史相结合。我们依次涂覆不同的材料以形成规定的初始状态,并使用热退火通过组装景观来演化这些明显的非平衡状态,遍历通常无法进入的瞬态结构。我们探索了巨大的相关超空间,涵盖了处理(退火温度和时间)、材料(组成和分子量)和分层(厚度和顺序)维度。我们展示了一系列奇特的非天然形态,包括垂直取向的穿孔层片、渡槽结构(具有基板固定穿孔的垂直层片壁)、护栏(齿状层片)和交错层片的网络。这种增强的结构控制可用于修改功能特性,包括访问超越其平衡类似物的区域。