Suppr超能文献

一种考虑多属性决策融合与依赖性的有影响力节点识别方法。

An influential node identification method considering multi-attribute decision fusion and dependency.

作者信息

Chen Chao-Yang, Tan Dingrong, Meng Xiangyi, Gao Jianxi

机构信息

School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China.

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.

出版信息

Sci Rep. 2022 Nov 14;12(1):19465. doi: 10.1038/s41598-022-23430-3.

Abstract

It is essential to study the robustness and centrality of interdependent networks for building reliable interdependent systems. Here, we consider a nonlinear load-capacity cascading failure model on interdependent networks, where the initial load distribution is not random, as usually assumed, but determined by the influence of each node in the interdependent network. The node influence is measured by an automated entropy-weighted multi-attribute algorithm that takes into account both different centrality measures of nodes and the interdependence of node pairs, then averaging for not only the node itself but also its nearest neighbors and next-nearest neighbors. The resilience of interdependent networks under such a more practical and accurate setting is thoroughly investigated for various network parameters, as well as how nodes from different layers are coupled and the corresponding coupling strength. The results thereby can help better monitoring interdependent systems.

摘要

为构建可靠的相互依赖系统,研究相互依赖网络的鲁棒性和中心性至关重要。在此,我们考虑相互依赖网络上的非线性负载 - 容量级联故障模型,其中初始负载分布并非如通常所假设的那样是随机的,而是由相互依赖网络中每个节点的影响所决定。节点影响通过一种自动熵权多属性算法来衡量,该算法既考虑了节点的不同中心性度量,又考虑了节点对之间的相互依赖性,然后不仅对节点本身,还对其最近邻和次近邻进行平均。在这种更实际且准确的设定下,针对各种网络参数,以及不同层的节点如何耦合及相应的耦合强度,深入研究了相互依赖网络的弹性。由此得到的结果有助于更好地监测相互依赖系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab0/9663727/1a0b160a5f12/41598_2022_23430_Fig1_HTML.jpg

相似文献

4
Redundant Design in Interdependent Networks.
PLoS One. 2016 Oct 20;11(10):e0164777. doi: 10.1371/journal.pone.0164777. eCollection 2016.
5
Optimization of robustness of interdependent network controllability by redundant design.
PLoS One. 2018 Feb 13;13(2):e0192874. doi: 10.1371/journal.pone.0192874. eCollection 2018.
7
Robustness of Interdependent Networks with Weak Dependency Based on Bond Percolation.
Entropy (Basel). 2022 Dec 9;24(12):1801. doi: 10.3390/e24121801.
8
Influence of Different Coupling Modes on the Robustness of Smart Grid under Targeted Attack.
Sensors (Basel). 2018 May 24;18(6):1699. doi: 10.3390/s18061699.

引用本文的文献

本文引用的文献

1
A Methodology for Modeling Interoperability of Smart Sensors in Smart Grids.
IEEE Trans Smart Grid. 2022 Jan;13(1). doi: 10.1109/tsg.2021.3124490.
2
Identifying influential spreaders by gravity model considering multi-characteristics of nodes.
Sci Rep. 2022 Jun 14;12(1):9879. doi: 10.1038/s41598-022-14005-3.
4
Influential nodes identification using network local structural properties.
Sci Rep. 2022 Feb 3;12(1):1833. doi: 10.1038/s41598-022-05564-6.
5
Identifying influential spreaders in complex networks by an improved gravity model.
Sci Rep. 2021 Nov 12;11(1):22194. doi: 10.1038/s41598-021-01218-1.
6
A Survey of Information Entropy Metrics for Complex Networks.
Entropy (Basel). 2020 Dec 15;22(12):1417. doi: 10.3390/e22121417.
7
Nonlinear model of cascade failure in weighted complex networks considering overloaded edges.
Sci Rep. 2020 Aug 10;10(1):13428. doi: 10.1038/s41598-020-69775-5.
8
Resilience centrality in complex networks.
Phys Rev E. 2020 Feb;101(2-1):022304. doi: 10.1103/PhysRevE.101.022304.
9
Breakdown of interdependent directed networks.
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1138-43. doi: 10.1073/pnas.1523412113. Epub 2016 Jan 19.
10
Robustness of network of networks under targeted attack.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052804. doi: 10.1103/PhysRevE.87.052804. Epub 2013 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验