Suppr超能文献

复杂网络中的弹性中心性

Resilience centrality in complex networks.

作者信息

Zhang Yongtao, Shao Cunqi, He Shibo, Gao Jianxi

机构信息

State Key Laboratory of Industrial Control Technology, Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.

出版信息

Phys Rev E. 2020 Feb;101(2-1):022304. doi: 10.1103/PhysRevE.101.022304.

Abstract

Resilience describes a system's ability to adjust its activity to retain the basic functionality when errors or failures occur in components (nodes) of the network. Due to the complexity of a system's structure, different components in the system exhibit diversity in the ability to affect the resilience of the system, bringing us a great challenge to protect the system from collapse. A fundamental problem is therefore to propose a physically insightful centrality index, with which to quantify the resilience contribution of a node in any systems effectively. However, existing centrality indexes are not suitable for the problem because they only consider the network structure of the system and ignore the impact of underlying dynamic characteristics. To break the limits, we derive a new centrality index: resilience centrality from the 1D dynamic equation of systems, with which we can quantify the ability of nodes to affect the resilience of the system accurately. Resilience centrality unveils the long-sought relations between the ability of nodes in a system's resilience and network structure of the system: the capacity is mainly determined by the degree and weighted nearest-neighbor degree of the node, in which weighted nearest-neighbor degree plays a prominent role. Further, we demonstrate that weighted nearest-neighbor degree has a positive impact on resilience centrality, while the effect of the degree depends on a specific parameter, average weighted degree β_{eff}, in the 1D dynamic equation. To test the performance of our approach, we construct four real networks from data, which corresponds to two complex systems with entirely different dynamic characteristics. The simulation results demonstrate the effectiveness of our resilience centrality, providing us theoretical insights into the protection of complex systems from collapse.

摘要

弹性描述了一个系统在网络组件(节点)出现错误或故障时调整其活动以保持基本功能的能力。由于系统结构的复杂性,系统中的不同组件在影响系统弹性的能力方面表现出多样性,这给我们保护系统免于崩溃带来了巨大挑战。因此,一个基本问题是提出一个具有物理洞察力的中心性指标,以便有效地量化任何系统中节点对弹性的贡献。然而,现有的中心性指标不适用于这个问题,因为它们只考虑系统的网络结构,而忽略了潜在动态特性的影响。为了突破这些限制,我们从系统的一维动态方程中推导出一个新的中心性指标:弹性中心性,利用它我们可以准确地量化节点影响系统弹性的能力。弹性中心性揭示了系统中节点的弹性能力与系统网络结构之间长期以来寻求的关系:这种能力主要由节点的度和加权最近邻度决定,其中加权最近邻度起着突出作用。此外,我们证明加权最近邻度对弹性中心性有积极影响,而度的影响取决于一维动态方程中的一个特定参数,即平均加权度βeff。为了测试我们方法的性能,我们从数据中构建了四个真实网络,它们对应于两个具有完全不同动态特性的复杂系统。仿真结果证明了我们的弹性中心性的有效性,为我们保护复杂系统免于崩溃提供了理论见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验