Suppr超能文献

AndroMalPack:通过检测和移除针对 Android 系统的重打包应用,增强基于机器学习的恶意软件分类。

AndroMalPack: enhancing the ML-based malware classification by detection and removal of repacked apps for Android systems.

机构信息

Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK.

Department of Computer Sciences, National University of Computer and Emerging Sciences, Islamabad, Pakistan.

出版信息

Sci Rep. 2022 Nov 14;12(1):19534. doi: 10.1038/s41598-022-23766-w.

Abstract

Due to the widespread usage of Android smartphones in the present era, Android malware has become a grave security concern. The research community relies on publicly available datasets to keep pace with evolving malware. However, a plethora of apps in those datasets are mere clones of previously identified malware. The reason is that instead of creating novel versions, malware authors generally repack existing malicious applications to create malware clones with minimal effort and expense. This paper investigates three benchmark Android malware datasets to quantify repacked malware using package names-based similarity. We consider 5560 apps from the Drebin dataset, 24,533 apps from the AMD and 695,470 apps from the AndroZoo dataset for analysis. Our analysis reveals that 52.3% apps in Drebin, 29.8% apps in the AMD and 42.3% apps in the AndroZoo dataset are repacked malware. Furthermore, we present AndroMalPack, an Android malware detector trained on clones-free datasets and optimized using Nature-inspired algorithms. Although trained on a reduced version of datasets, AndroMalPack classifies novel and repacked malware with a remarkable detection accuracy of up to 98.2% and meagre false-positive rates. Finally, we publish a dataset of cloned apps in Drebin, AMD, and AndrooZoo to foster research in the repacked malware analysis domain.

摘要

由于当今时代 Android 智能手机的广泛使用,Android 恶意软件已成为严重的安全隐患。研究界依靠公开可用的数据集来跟上恶意软件的发展步伐。然而,这些数据集中的许多应用程序仅仅是先前识别的恶意软件的克隆。原因是恶意软件作者通常不会创建新的版本,而是通过最小的努力和成本重新打包现有的恶意应用程序来创建恶意软件克隆。本文调查了三个基准 Android 恶意软件数据集,以使用基于包名的相似性来量化重新打包的恶意软件。我们考虑了 Drebin 数据集的 5560 个应用程序、AMD 数据集的 24533 个应用程序和 AndroZoo 数据集的 695470 个应用程序进行分析。我们的分析表明,Drebin 数据集中有 52.3%的应用程序、AMD 数据集中有 29.8%的应用程序和 AndroZoo 数据集中有 42.3%的应用程序是重新打包的恶意软件。此外,我们提出了 AndroMalPack,这是一种在无克隆数据集上训练并使用自然启发式算法优化的 Android 恶意软件检测器。尽管在数据集的缩减版本上进行了训练,但 AndroMalPack 可以对新的和重新打包的恶意软件进行分类,其检测准确率高达 98.2%,假阳性率极低。最后,我们发布了一个在 Drebin、AMD 和 AndrooZoo 中克隆应用程序的数据集,以促进重新打包恶意软件分析领域的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7df/9663591/01468bac42e1/41598_2022_23766_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验