Suppr超能文献

基于静态分析的 Android 权限型恶意软件检测系统。

A static analysis approach for Android permission-based malware detection systems.

机构信息

Faculty of Computing, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia.

出版信息

PLoS One. 2021 Sep 30;16(9):e0257968. doi: 10.1371/journal.pone.0257968. eCollection 2021.

Abstract

The evolution of malware is causing mobile devices to crash with increasing frequency. Therefore, adequate security evaluations that detect Android malware are crucial. Two techniques can be used in this regard: Static analysis, which meticulously examines the full codes of applications, and dynamic analysis, which monitors malware behaviour. While both perform security evaluations successfully, there is still room for improvement. The goal of this research is to examine the effectiveness of static analysis to detect Android malware by using permission-based features. This study proposes machine learning with different sets of classifiers was used to evaluate Android malware detection. The feature selection method in this study was applied to determine which features were most capable of distinguishing malware. A total of 5,000 Drebin malware samples and 5,000 Androzoo benign samples were utilised. The performances of the different sets of classifiers were then compared. The results indicated that with a TPR value of 91.6%, the Random Forest algorithm achieved the highest level of accuracy in malware detection.

摘要

恶意软件的不断发展导致移动设备崩溃的频率越来越高。因此,进行充分的安全评估以检测 Android 恶意软件至关重要。在这方面可以使用两种技术:静态分析,它仔细检查应用程序的完整代码;以及动态分析,它监控恶意软件的行为。虽然这两种技术都能成功地进行安全评估,但仍有改进的空间。本研究的目的是通过使用基于权限的特征来检查静态分析检测 Android 恶意软件的有效性。本研究使用了不同的分类器集的机器学习来评估 Android 恶意软件检测。本研究应用了特征选择方法来确定最能区分恶意软件的特征。总共使用了 5000 个 Drebin 恶意软件样本和 5000 个 Androzoo 良性样本。然后比较了不同分类器集的性能。结果表明,随机森林算法在检测恶意软件时的 TPR 值为 91.6%,准确率最高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf33/8483345/1b7bd6ad36a0/pone.0257968.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验