Zhang Xianhui, Gao Peiyuan, Wu Zhaohui, Engelhard Mark H, Cao Xia, Jia Hao, Xu Yaobin, Liu Haodong, Wang Chongming, Liu Jun, Zhang Ji-Guang, Liu Ping, Xu Wu
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
ACS Appl Mater Interfaces. 2022 Nov 23;14(46):52046-52057. doi: 10.1021/acsami.2c16890. Epub 2022 Nov 15.
Sulfurized polyacrylonitrile (SPAN) represents one of the most promising directions for high-energy-density lithium (Li)-sulfur batteries. However, the practical application of Li||SPAN is currently limited by the insufficient chemical/electrochemical stability of electrode/electrolyte interphase (EEI). Here, a pinned EEI layer is designed for stabilizing a SPAN cathode by regulating the EEI formation mechanism in an advanced LiFSI/ether/fluorinated-ether electrolyte. Computational simulations and experimental investigations reveal that, benefiting from the nonsolvating nature, the fluorinated-ether can not only act as a protective shield to prevent the Li polysulfides dissolution but also, more importantly, endow a diffusion-controlled EEI formation process. It promotes the formation of a uniform, protective, and conductive EEI layer pinning into SPAN surface region, enabling the high loading Li||SPAN batteries with superior cycling stability, wide temperature performance, and high-rate capability. This design strategy opens an avenue for exploring advanced electrolytes for Li||SPAN batteries and guides the interface design for broad types of battery systems.
硫化聚丙烯腈(SPAN)是高能量密度锂硫电池最具前景的发展方向之一。然而,目前锂||SPAN的实际应用受到电极/电解质界面(EEI)化学/电化学稳定性不足的限制。在此,通过在先进的双(氟磺酰)亚胺锂/醚/氟化醚电解质中调节EEI形成机制,设计了一种固定的EEI层来稳定SPAN阴极。计算模拟和实验研究表明,得益于非溶剂化性质,氟化醚不仅可以作为保护屏障防止多硫化锂溶解,更重要的是,赋予一个扩散控制的EEI形成过程。它促进形成均匀、保护性且导电的EEI层,固定在SPAN表面区域,使高负载锂||SPAN电池具有卓越的循环稳定性、宽温度性能和高倍率性能。这种设计策略为探索锂||SPAN电池的先进电解质开辟了一条途径,并指导了广泛类型电池系统的界面设计。