Wu Zhaohui, Bak Seong-Min, Shadike Zulipiya, Yu Sicen, Hu Enyuan, Xing Xing, Du Yonghua, Yang Xiao-Qing, Liu Haodong, Liu Ping
Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States.
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States.
ACS Appl Mater Interfaces. 2021 Jul 14;13(27):31733-31740. doi: 10.1021/acsami.1c07903. Epub 2021 Jul 2.
Sulfurized polyacrylonitrile (SPAN) is a promising high-capacity cathode material. In this work, we use spatially resolved X-ray absorption spectroscopy combined with X-ray fluorescence (XRF) microscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy to examine the structural transformation of SPAN and the critical role of a robust cathode-electrolyte interface (CEI) on the electrode. LiS species forms during the cycling of SPAN. However, in carbonate-based electrolytes and ether-based electrolytes with LiNO additives, these species are well protected by the CEI and do not dissolve into the electrolytes. In contrast, in an ether-based electrolyte without the LiNO additive, LiS species dissolve into the electrolyte, resulting in the shuttle effect and capacity loss. Examination of the Li anode by XRF and SEM reveals dense spherical Li morphology in ether-based electrolytes, but sulfur is present in the absence of the LiNO additive. In contrast, porous dendritic Li is found in the carbonate electrolyte. These analyses established that an ether-based electrolyte with LiNO is a superior choice that enables stable cycling of both electrodes. Based on these insights, we successfully demonstrate the stable cycling of high areal loading SPAN cathode (>6.5 mA h cm) with lean electrolyte amounts, showing promising Li∥SPAN cell performance under practical conditions.
硫化聚丙烯腈(SPAN)是一种很有前景的高容量阴极材料。在这项工作中,我们使用空间分辨X射线吸收光谱结合X射线荧光(XRF)显微镜、X射线光电子能谱和扫描电子显微镜来研究SPAN的结构转变以及坚固的阴极-电解质界面(CEI)在电极上的关键作用。在SPAN的循环过程中会形成LiS物种。然而,在含LiNO添加剂的碳酸盐基电解质和醚基电解质中,这些物种受到CEI的良好保护,不会溶解到电解质中。相比之下,在不含LiNO添加剂的醚基电解质中,LiS物种会溶解到电解质中,导致穿梭效应和容量损失。通过XRF和SEM对锂阳极进行检查发现,在醚基电解质中锂呈现致密的球形形态,但在没有LiNO添加剂的情况下存在硫。相比之下,在碳酸盐电解质中发现了多孔树枝状锂。这些分析表明,含LiNO的醚基电解质是使两个电极都能稳定循环的更优选择。基于这些见解,我们成功地证明了在贫电解质用量下高面负载SPAN阴极(>6.5 mA h cm)的稳定循环,展示了在实际条件下Li∥SPAN电池的良好性能。