Department of Chemistry, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois61801, United States.
Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan48109, United States.
J Am Chem Soc. 2022 Nov 30;144(47):21606-21616. doi: 10.1021/jacs.2c08885. Epub 2022 Nov 15.
Many naturally occurring metalloenzymes are gated by rate-limiting conformational changes, and there exists a critical interplay between macroscopic structural rearrangements of the protein and subatomic changes affecting the electronic structure of embedded metallocofactors. Despite this connection, most artificial metalloproteins (ArMs) are prepared in structurally rigid protein hosts. To better model the natural mechanisms of metalloprotein reactivity, we have developed conformationally switchable ArMs (swArMs) that undergo a large-scale structural rearrangement upon allosteric effector binding. The swArMs reported here contain a Co(dmgH)(X) cofactor (dmgH = dimethylglyoxime and X = N, HC, and Pr). We used UV-vis absorbance and energy-dispersive X-ray fluorescence spectroscopies, along with protein assays, and mass spectrometry to show that these metallocofactors are installed site-specifically and stoichiometrically via direct Co-S cysteine ligation within the glutamine binding protein (GlnBP). Structural characterization by single-crystal X-ray diffraction unveils the precise positioning and microenvironment of the metallocofactor within the protein fold. Fluorescence, circular dichroism, and infrared spectroscopies, along with isothermal titration calorimetry, reveal that allosteric Gln binding drives a large-scale protein conformational change. In swArMs containing a Co(dmgH)(CH) cofactor, we show that the protein stabilizes the otherwise labile Co-S bond relative to the free complex. Kinetics studies performed as a function of temperature and pH reveal that the protein conformational change accelerates this bond dissociation in a pH-dependent fashion. We present swArMs as a robust platform for investigating the interplay between allostery and metallocofactor regulation.
许多天然存在的金属酶受到限速构象变化的控制,并且蛋白质的宏观结构重排与影响嵌入金属辅因子电子结构的亚原子变化之间存在着关键的相互作用。尽管存在这种联系,但大多数人工金属蛋白(ArM)都是在结构刚性的蛋白质宿主中制备的。为了更好地模拟金属蛋白反应的自然机制,我们开发了构象可切换的 ArM(swArM),它们在变构效应物结合时会发生大规模结构重排。这里报道的 swArM 含有 Co(dmgH)(X)辅因子(dmgH = 二甲基乙二肟,X = N、HC 和 Pr)。我们使用紫外-可见吸收光谱和能量色散 X 射线荧光光谱,以及蛋白质测定法和质谱法,表明这些金属辅因子是通过 Co-S 半胱氨酸键在谷氨酰胺结合蛋白(GlnBP)内的直接连接而特异性和化学计量地安装的。单晶 X 射线衍射的结构表征揭示了金属辅因子在蛋白质折叠内的精确定位和微环境。荧光、圆二色性和红外光谱以及等温滴定量热法表明,变构 Gln 结合驱动了大规模的蛋白质构象变化。在含有 Co(dmgH)(CH)辅因子的 swArM 中,我们表明蛋白质相对于游离复合物稳定了否则不稳定的 Co-S 键。作为温度和 pH 函数进行的动力学研究表明,蛋白质构象变化以 pH 依赖的方式加速了这种键的解离。我们提出 swArM 作为研究变构和金属辅因子调节之间相互作用的强大平台。