Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland.
Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States.
ACS Synth Biol. 2022 Dec 16;11(12):4193-4209. doi: 10.1021/acssynbio.2c00498. Epub 2022 Nov 15.
Actinomycetes produce a variety of clinically indispensable molecules, such as antineoplastic anthracyclines. However, the actinomycetes are hindered in their further development as genetically engineered hosts for the synthesis of new anthracycline analogues due to their slow growth kinetics associated with their mycelial life cycle and the lack of a comprehensive genetic toolbox for combinatorial biosynthesis. In this report, we tackled both issues via the development of the BIOPOLYMER (BIOBricks POLYketide Metabolic EngineeRing) toolbox: a comprehensive synthetic biology toolbox consisting of engineered strains, promoters, vectors, and biosynthetic genes for the synthesis of anthracyclinones. An improved derivative of the production host M1152 was created by deleting the gene cluster that specifies extracellular poly-β-1,6--acetylglucosamine (PNAG). This resulted in a loss of mycelial aggregation, with improved biomass accumulation and anthracyclinone production. We then leveraged BIOPOLYMER to engineer four distinct anthracyclinone pathways, identifying optimal combinations of promoters, genes, and vectors to produce aklavinone, 9--aklavinone, auramycinone, and nogalamycinone at titers between 15-20 mg/L. Optimization of nogalamycinone production strains resulted in titers of 103 mg/L. We structurally characterized six anthracyclinone products from fermentations, including new compounds 9,10--7-deoxy-nogalamycinone and 4--β-d-glucosyl-nogalamycinone. Lastly, we tested the antiproliferative activity of the anthracyclinones in a mammalian cancer cell viability assay, in which nogalamycinone, auramycinone, and aklavinone exhibited moderate cytotoxicity against several cancer cell lines. We envision that BIOPOLYMER will serve as a foundational platform technology for the synthesis of designer anthracycline analogues.
放线菌产生多种临床上不可或缺的分子,如抗肿瘤蒽环类抗生素。然而,由于其菌丝生命周期相关的缓慢生长动力学以及缺乏用于组合生物合成的综合遗传工具箱,放线菌在作为新型蒽环类抗生素类似物的基因工程宿主方面受到限制。在本报告中,我们通过开发 BIOPOLYMER(生物聚合体 POLYketide 代谢工程)工具箱来解决这两个问题:该工具箱是一个综合的合成生物学工具箱,包含用于蒽环酮类合成的工程菌株、启动子、载体和生物合成基因。通过删除指定细胞外多-β-1,6--乙酰氨基葡萄糖(PNAG)的基因簇,创建了生产宿主 M1152 的改良衍生物。这导致菌丝聚集丧失,生物量积累和蒽环酮类产量提高。然后,我们利用 BIOPOLYMER 工程化了四条不同的蒽环酮途径,确定了最佳的启动子、基因和载体组合,以 15-20mg/L 的浓度生产阿克拉霉素酮、9--阿克拉霉素酮、auramycinone 和 nogalamycinone。优化 nogalamycinone 生产菌株的产量达到 103mg/L。我们从发酵中结构表征了六种蒽环酮类产物,包括新型化合物 9,10--7-去氧-nogalamycinone 和 4--β-d-葡萄糖基-nogalamycinone。最后,我们在哺乳动物癌细胞活力测定中测试了蒽环酮类的抗增殖活性,其中 nogalamycinone、auramycinone 和 aklavinone 对几种癌细胞系表现出中等细胞毒性。我们设想 BIOPOLYMER 将成为设计蒽环类抗生素类似物合成的基础平台技术。