Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
Department of Chemistry, College of Arts and Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
Environ Sci Technol. 2022 Dec 6;56(23):16611-16620. doi: 10.1021/acs.est.2c03200. Epub 2022 Nov 15.
Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX) with inorganic sulfate aerosols contributes substantially to secondary organic aerosol (SOA) formation, which constitutes a large mass fraction of atmospheric fine particulate matter (PM). However, the atmospheric chemical sinks of freshly generated IEPOX-SOA particles remain unclear. We examined the role of heterogeneous oxidation of freshly generated IEPOX-SOA particles by gas-phase hydroxyl radical (OH) under dark conditions as one potential atmospheric sink. After 4 h of gas-phase OH exposure (∼3 × 10 molecules cm), chemical changes in smog chamber-generated IEPOX-SOA particles were assessed by hydrophilic interaction liquid chromatography coupled with electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS). A comparison of the molecular-level compositional changes in IEPOX-SOA particles during aging with or without OH revealed that decomposition of oligomers by heterogeneous OH oxidation acts as a sink for OH and maintains a reservoir of low-volatility compounds, including monomeric sulfate esters and oligomer fragments. We propose tentative structures and formation mechanisms for previously uncharacterized SOA constituents in PM. Our results suggest that this OH-driven renewal of low-volatility products may extend the atmospheric lifetimes of particle-phase IEPOX-SOA by slowing the production of low-molecular weight, high-volatility organic fragments and likely contributes to the large quantities of 2-methyltetrols and methyltetrol sulfates reported in PM.
异戊二烯环氧化二醇(IEPOX)与无机硫酸盐气溶胶的酸驱动多相化学反应对二次有机气溶胶(SOA)的形成有很大贡献,SOA 构成了大气细颗粒物(PM)的很大一部分质量分数。然而,新生成的 IEPOX-SOA 颗粒的大气化学汇仍然不清楚。我们研究了在黑暗条件下气相羟基自由基(OH)对新生成的 IEPOX-SOA 颗粒的非均相氧化作为一种潜在的大气汇的作用。在 4 小时的气相 OH 暴露(约 3×10 分子 cm)后,通过亲水相互作用液相色谱与电喷雾电离高分辨率四极杆飞行时间质谱(HILIC/ESI-HR-QTOFMS)评估了烟雾箱生成的 IEPOX-SOA 颗粒的化学变化。在有或没有 OH 的情况下,IEPOX-SOA 颗粒老化过程中分子水平组成变化的比较表明,异相 OH 氧化分解低聚物是 OH 的汇,并维持低挥发性化合物的储库,包括单体硫酸盐酯和低聚物碎片。我们提出了 PM 中以前未表征的 SOA 成分的暂定结构和形成机制。我们的结果表明,这种由 OH 驱动的低挥发性产物的更新可能通过减缓低分子量、高挥发性有机碎片的生成来延长颗粒相 IEPOX-SOA 的大气寿命,并可能导致 PM 中大量 2-甲基四醇和甲基四醇硫酸盐的产生。