Suppr超能文献

次生有机气溶胶在衬液中形成活性氧的化学和细胞形成。

Chemical and Cellular Formation of Reactive Oxygen Species from Secondary Organic Aerosols in Epithelial Lining Fluid.

机构信息

Department of Chemistry, University of California, Irvine, CA, USA.

Division of Occupational and Environmental Medicine, University of California, Irvine, CA, USA.

出版信息

Res Rep Health Eff Inst. 2023 Dec;2023(215):1-56.

Abstract

INTRODUCTION

Oxidative stress mediated by reactive oxygen species (ROS) is a key process for adverse aerosol health effects. Secondary organic aerosols (SOA) account for a major fraction of particulate matter with aerodynamic diameter ≤2.5 µm (PM). PM inhalation and deposition into the respiratory tract causes the formation of ROS by chemical reactions and phagocytosis of macrophages in the epithelial lining fluid (ELF), but their relative contributions are not well quantified and their link to oxidative stress remains uncertain. The specific aims of this project were (1) elucidating the chemical mechanism and quantifying the formation kinetics of ROS in the ELF by SOA; (2) quantifying the relative importance of ROS formation by chemical reactions and macrophages in the ELF.

METHODS

SOA particles were generated using reaction chambers from oxidation of various precursors including isoprene, terpenes, and aromatic compounds with or without nitrogen oxides (NO). We collected size-segregated PM at two highway sites in Anaheim, CA, and Long Beach, CA, and at an urban site in Irvine, CA, during two wildfire events. The collected particles were extracted into water or surrogate ELF that contained lung antioxidants. ROS generation was quantified using electron paramagnetic resonance (EPR) spectroscopy with a spin-trapping technique. PM oxidative potential (OP) was also quantified using the dithiothreitol assay. In addition, kinetic modeling was applied for analysis and interpretation of experimental data. Finally, we quantified cellular superoxide release by RAW264.7 macrophage cells upon exposure to quinones and isoprene SOA using a chemiluminescence assay as calibrated with an EPR spin-probing technique. We also applied cellular imaging techniques to study the cellular mechanism of superoxide release and oxidative damage on cell membranes.

RESULTS

Superoxide radicals (·O) were formed from aqueous reactions of biogenic SOA generated by hydroxy radical (·OH) photooxidation of isoprene, β-pinene, α-terpineol, and d-limonene. The temporal evolution of ·OH and ·O formation was elucidated by kinetic modeling with a cascade of aqueous reactions, including the decomposition of organic hydroperoxides (ROOH), ·OH oxidation of primary or secondary alcohols, and unimolecular decomposition of α-hydroxyperoxyl radicals. Relative yields of various types of ROS reflected the relative abundance of ROOH and alcohols contained in SOA, which generated under high NO conditions, exhibited lower ROS yields. ROS formation by SOA was also affected by pH. Isoprene SOA had higher ·OH and organic radical yields at neutral than at acidic pH. At low pH ·O was the dominant species generated by all types of SOA. At neutral pH, α-terpineol SOA exhibited a substantial yield of carbon-centered organic radicals (R·), while no radical formation was observed by aromatic SOA.

UNLABELLED

Organic radicals in the ELF were formed by mixtures of Fe and SOA generated from photooxidation of isoprene, α-terpineol, and toluene. The molar yields of organic radicals by SOA were 5-10 times higher in ELF than in water. Fe enhanced organic radical yields by a factor of 20-80. Ascorbate mediated redox cycling of iron ions and sustained organic peroxide decomposition, as supported by kinetic modeling reproducing time- and concentration-dependence of organic radical formation, as well as by additional experiments observing the formation of Fe and ascorbate radicals in mixtures of ascorbate and Fe. ·OH and superoxide were found to be efficiently scavenged by antioxidants.

UNLABELLED

Wildfire PM mainly generated ·OH and R· with minor contributions from superoxide and oxygen-centered organic radicals (RO·). PM OP was high in wildfire PM, exhibiting very weak correlation with radical forms of ROS. These results were in stark contrast with PM collected at highway and urban sites, which generated much higher amounts of radicals dominated by ·OH radicals that correlated well with OP. By combining field measurements of size-segregated chemical composition, a human respiratory tract model, and kinetic modeling, we quantified production rates and concentrations of different types of ROS in different regions of the ELF by considering particle-size-dependent respiratory deposition. While hydrogen peroxide (HO) and ·O production were governed by Fe and Cu ions, ·OH radicals were mainly generated by organic compounds and Fenton-like reactions of metal ions. We obtained mixed results for correlations between PM OP and ROS formation, providing rationale and limitations of the use of oxidative potential as an indicator for PM toxicity in epidemiological and toxicological studies.

UNLABELLED

Quinones and isoprene SOA activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in macrophages, releasing massive amounts of superoxide via respiratory burst and overwhelming the superoxide formation by aqueous chemical reactions in the ELF. The threshold dose for macrophage activation was much smaller for quinones compared with isoprene SOA. The released ROS caused lipid peroxidation to increase cell membrane fluidity, inducing oxidative damage and stress. Further increases of doses led to the activation of antioxidant response elements, reducing the net cellular superoxide production. At very high doses and long exposure times, chemical production became comparably important or dominant if the escalation of oxidative stress led to cell death.

CONCLUSIONS

The mechanistic understandings and quantitative information on ROS generation by SOA particles provided a basis for further elucidation of adverse aerosol health effects and oxidative stress by PM. For a comprehensive assessment of PM toxicity and health effects via oxidative stress, it is important to consider both chemical reactions and cellular processes for the formation of ROS in the ELF. Chemical composition of PM strongly influences ROS formation; further investigations are required to study ROS formation from various PM sources. Such research will provide critical information to environmental agencies and policymakers for the development of air quality policy and regulation.

摘要

简介

活性氧物种(ROS)介导的氧化应激是气溶胶对健康产生不利影响的关键过程。二次有机气溶胶(SOA)占空气动力学直径≤2.5 µm(PM)的颗粒物的主要部分。PM 吸入和沉积到呼吸道中,通过化学反 应和上皮衬里液(ELF)中的巨噬细胞吞噬作用,导致 ROS 的形成,但它们的相对贡献尚未得到充分量化,其与氧化应激的联系仍不确定。本项目的具体目标是:(1)阐明 SOA 在 ELF 中通过化学机制和定量测定 ROS 的形成动力学;(2)量化 ELF 中化学反 应和巨噬细胞形成 ROS 的相对重要性。

方法

使用反应室从异戊二烯、萜烯和芳香族化合物等各种前体的氧化中生成 SOA,其中包括有或没有氮氧化物(NO)。我们在加利福尼亚州阿纳海姆和长滩的两个高速公路站点以及加利福尼亚州尔湾的一个城市站点收集大小分级的 PM,并将收集到的颗粒提取到水或含有肺抗氧化剂的替代 ELF 中。使用电子顺磁共振(EPR)光谱和自旋捕获技术定量 ROS 的生成。还使用二硫苏糖醇测定法定量 PM 的氧化潜力(OP)。此外,还应用了动力学建模来分析和解释实验数据。最后,我们通过使用 EPR 自旋探测技术校准的化学发光测定法,量化了 RAW264.7 巨噬细胞细胞暴露于醌和异戊二烯 SOA 时细胞内超氧化物的释放。我们还应用细胞成像技术来研究超氧化物释放和细胞膜氧化损伤的细胞机制。

结果

羟基自由基(·OH)光氧化异戊二烯、β-蒎烯、α-萜品醇和 d-柠檬烯生成的生物 SOA 中的羟自由基(·OH)水溶液反应形成超氧自由基(·O)。通过包含有机过氧化物(ROOH)分解、初级或次级醇的·OH氧化以及α-羟过氧基自由基的单分子分解的级联水溶液反应的动力学建模阐明了·OH 和·O 形成的时间演化。各种类型 ROS 的相对产率反映了 SOA 中 ROOH 和醇的相对丰度,在高 NO 条件下生成的 SOA 表现出较低的 ROS 产率。SOA 还受到 pH 的影响。在中性 pH 时,与酸性 pH 相比,异戊二烯 SOA 表现出更高的·OH 和有机自由基产率。在低 pH 下,所有类型的 SOA 都以·O 为主要生成物种。在中性 pH 时,α-萜品醇 SOA 表现出大量的碳中心有机自由基(R·)生成,而芳香族 SOA 则没有自由基形成。

未标记

异戊二烯、α-萜品醇和甲苯光氧化生成的 SOA 与铁混合生成 ELF 中的有机自由基。SOA 产生的有机自由基摩尔产率在 ELF 中比在水中高 5-10 倍。Fe 增强了有机自由基产率 20-80 倍。动力学建模再现了有机自由基形成的时间和浓度依赖性,以及在抗坏血酸和 Fe 混合物中观察到 Fe 和抗坏血酸自由基的形成,这支持了铁离子的还原循环和持续的有机过氧化物分解。·OH 和超氧化物被抗氧化剂有效地清除。

未标记

野火 PM 主要生成·OH 和 R·,只有少量超氧化物和氧中心有机自由基(RO·)。野火 PM 的 OP 很高,与 ROS 的自由基形式相关性较弱。这些结果与在高速公路和城市站点收集的 PM 形成鲜明对比,后者生成的自由基形式主要由·OH 自由基主导,与 OP 相关性很好。通过结合大气颗粒物化学组成的大小分级现场测量、人类呼吸道模型和动力学建模,我们考虑了颗粒大小依赖性呼吸沉积,量化了 ELF 不同区域不同类型 ROS 的产生速率和浓度。虽然过氧化氢(HO)和·O 生成受 Fe 和 Cu 离子控制,但·OH 自由基主要由有机化合物和金属离子的芬顿样反应生成。我们对 PM OP 与 ROS 形成之间的相关性得到了混合结果,为使用 PM 毒性的氧化潜力作为流行病学和毒理学研究中的 PM 毒性的指示提供了合理性和局限性。

未标记

醌类和异戊二烯 SOA 激活烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶,在巨噬细胞中引发呼吸爆发,释放大量超氧化物,通过氧化应激导致细胞膜流动性增加,从而引发氧化损伤和应激。醌类物质比异戊二烯 SOA 更能激活 NADPH 氧化酶,引发巨噬细胞激活的阈值剂量要小得多。释放的 ROS 导致脂质过氧化,增加细胞内的超氧化物生成。增加剂量会进一步激活抗氧化反应元件,从而减少细胞内超氧化物的净产生。在非常高的剂量和长时间暴露下,如果氧化应激导致细胞死亡,化学产生变得同样重要或占主导地位。

结论

SOA 颗粒生成 ROS 的机制理解和定量信息为进一步阐明 PM 对气溶胶健康的不利影响和氧化应激提供了基础。为了通过氧化应激对 PM 毒性进行全面评估,重要的是要考虑 ELF 中 ROS 的形成的化学反应和细胞过程。PM 的化学组成强烈影响 ROS 的形成;需要进一步研究以研究各种 PM 源的 ROS 形成。这些研究将为环境机构和决策者提供重要信息,以制定空气质量政策和法规。

相似文献

5
Superoxide Formation from Aqueous Reactions of Biogenic Secondary Organic Aerosols.
Environ Sci Technol. 2021 Jan 5;55(1):260-270. doi: 10.1021/acs.est.0c07789. Epub 2020 Dec 22.
8
Effects of Acidity on Reactive Oxygen Species Formation from Secondary Organic Aerosols.
ACS Environ Au. 2022 Jul 20;2(4):336-345. doi: 10.1021/acsenvironau.2c00018. Epub 2022 Apr 29.
10
Oxidative Potential of Particulate Matter and Generation of Reactive Oxygen Species in Epithelial Lining Fluid.
Environ Sci Technol. 2019 Nov 5;53(21):12784-12792. doi: 10.1021/acs.est.9b03823. Epub 2019 Oct 11.

引用本文的文献

1
Professionalism vs. engagement: quality of SSc information on WeChat.
Front Public Health. 2025 May 14;13:1527853. doi: 10.3389/fpubh.2025.1527853. eCollection 2025.

本文引用的文献

9
Effects of Acidity on Reactive Oxygen Species Formation from Secondary Organic Aerosols.
ACS Environ Au. 2022 Jul 20;2(4):336-345. doi: 10.1021/acsenvironau.2c00018. Epub 2022 Apr 29.
10
Seasonal and Spatial Variations of PM and PM Oxidative Potential in Five Urban and Rural Sites across Lombardia Region, Italy.
Int J Environ Res Public Health. 2022 Jun 24;19(13):7778. doi: 10.3390/ijerph19137778.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验