Suppr超能文献

用于毫秒级可编程金属表面的铂石墨烯催化冷凝器。

Platinum Graphene Catalytic Condenser for Millisecond Programmable Metal Surfaces.

机构信息

Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States.

Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States.

出版信息

J Am Chem Soc. 2022 Dec 7;144(48):22113-22127. doi: 10.1021/jacs.2c09481. Epub 2022 Nov 16.

Abstract

Accelerating catalytic chemistry and tuning surface reactions require precise control of the electron density of metal atoms. In this work, nanoclusters of platinum were supported on a graphene sheet within a catalytic condenser device that facilitated electron or hole accumulation in the platinum active sites with negative or positive applied potential, respectively. The catalytic condenser was fabricated by depositing on top of a -type Si wafer an amorphous HfO dielectric (70 nm), on which was placed the active layer of 2-4 nm platinum nanoclusters on graphene. A potential of ±6 V applied to the Pt/graphene layer relative to the silicon electrode moved electrons into or out of the active sites of Pt, attaining charge densities more than 1% of an electron or hole per surface Pt atom. At a level of charge condensation of ±10% of an electron per surface atom, the binding energy of carbon monoxide to a Pt(111) surface was computed via density functional theory to change 24 kJ mol (0.25 eV), which was consistent with the range of carbon monoxide binding energies determined from temperature-programmed desorption (ΔBE of 20 ± 1 kJ mol or 0.19 eV) and equilibrium surface coverage measurements (ΔBE of 14 ± 1 kJ mol or 0.14 eV). Impedance spectroscopy indicated that Pt/graphene condensers with potentials oscillating at 3000 Hz exhibited negligible loss in capacitance and charge accumulation, enabling programmable surface conditions at amplitudes and frequencies necessary to achieve catalytic resonance.

摘要

加速催化化学和调整表面反应需要精确控制金属原子的电子密度。在这项工作中,铂纳米团簇负载在石墨烯片上,形成一个催化冷凝器装置,该装置能够在施加负向或正向偏压时,分别在铂活性位点中积累电子或空穴。催化冷凝器是通过在 a 型 Si 晶圆上沉积一层 70nm 的非晶 HfO 介电层,然后在介电层上放置 2-4nm 厚的铂纳米团簇/石墨烯活性层来制备的。将 Pt/graphene 层相对于硅电极施加 ±6V 的电势,可以将电子移入或移出 Pt 的活性位点,从而实现超过 1%的表面 Pt 原子每单位电荷密度。在每单位表面原子电荷凝聚 ±10%的水平下,通过密度泛函理论计算出一氧化碳与 Pt(111)表面的结合能发生了 24kJ/mol(0.25eV)的变化,这与从程序升温脱附(ΔBE 为 20±1kJ/mol 或 0.19eV)和平衡表面覆盖度测量(ΔBE 为 14±1kJ/mol 或 0.14eV)确定的一氧化碳结合能范围一致。阻抗谱表明,在 3000Hz 下电势振荡的 Pt/graphene 冷凝器表现出电容和电荷积累的可忽略的损耗,从而能够在实现催化共振所需的幅度和频率下实现可编程的表面条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验