Onn Tzia Ming, Gathmann Sallye R, Wang Yuxin, Patel Roshan, Guo Silu, Chen Han, Soeherman Jimmy K, Christopher Phillip, Rojas Geoffrey, Mkhoyan K Andre, Neurock Matthew, Abdelrahman Omar A, Frisbie C Daniel, Dauenhauer Paul J
Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States.
Department of Chemical Engineering, University of Massachusetts Amherst, 686 N. Pleasant Street, Amherst, Massachusetts 01003, United States.
JACS Au. 2022 May 7;2(5):1123-1133. doi: 10.1021/jacsau.2c00114. eCollection 2022 May 23.
Precise control of electron density at catalyst active sites enables regulation of surface chemistry for the optimal rate and selectivity to products. Here, an ultrathin catalytic film of amorphous alumina (4 nm) was integrated into a catalytic condenser device that enabled tunable electron depletion from the alumina active layer and correspondingly stronger Lewis acidity. The catalytic condenser had the following structure: amorphous alumina/graphene/HfO dielectric (70 nm)/p-type Si. Application of positive voltages up to +3 V between graphene and the p-type Si resulted in electrons flowing out of the alumina; positive charge accumulated in the catalyst. Temperature-programmed surface reaction of thermocatalytic isopropanol (IPA) dehydration to propene on the charged alumina surface revealed a shift in the propene formation peak temperature of up to Δ ∼50 °C relative to the uncharged film, consistent with a 16 kJ mol (0.17 eV) reduction in the apparent activation energy. Electrical characterization of the thin amorphous alumina film by ultraviolet photoelectron spectroscopy and scanning tunneling microscopy indicates that the film is a defective semiconductor with an appreciable density of in-gap electronic states. Density functional theory calculations of IPA binding on the pentacoordinate aluminum active sites indicate significant binding energy changes (ΔBE) up to 60 kJ mol (0.62 eV) for 0.125 e depletion per active site, supporting the experimental findings. Overall, the results indicate that continuous and fast electronic control of thermocatalysis can be achieved with the catalytic condenser device.
精确控制催化剂活性位点处的电子密度,能够调节表面化学性质,以实现对产物的最佳反应速率和选择性。在此,将非晶氧化铝超薄催化膜(4纳米)集成到催化冷凝器装置中,该装置能够实现从氧化铝活性层的可调电子耗尽,并相应增强路易斯酸度。催化冷凝器具有以下结构:非晶氧化铝/石墨烯/HfO介电层(70纳米)/p型硅。在石墨烯和p型硅之间施加高达+3V的正电压,会导致电子从氧化铝流出;正电荷在催化剂中积累。在带电氧化铝表面上,热催化异丙醇(IPA)脱水生成丙烯的程序升温表面反应表明,相对于不带电的薄膜,丙烯生成峰温度的变化高达Δ ∼50°C,这与表观活化能降低16 kJ/mol(0.17 eV)一致。通过紫外光电子能谱和扫描隧道显微镜对非晶氧化铝薄膜进行电学表征,结果表明该薄膜是一种具有可观带隙电子态密度的缺陷半导体。密度泛函理论对IPA在五配位铝活性位点上的结合计算表明,每个活性位点耗尽0.125个电子时,结合能变化(ΔBE)高达60 kJ/mol(0.62 eV),这支持了实验结果。总体而言,结果表明催化冷凝器装置能够实现对热催化的连续且快速的电子控制。