Suppr超能文献

疫情问答:答案片段发现的问题生成和蕴涵。

Epidemic Question Answering: question generation and entailment for Answer Nugget discovery.

机构信息

Human Language Technology Research Institute, Department of Computer Science, University of Texas at Dallas, Richardson, Texas, USA.

出版信息

J Am Med Inform Assoc. 2023 Jan 18;30(2):329-339. doi: 10.1093/jamia/ocac222.

Abstract

OBJECTIVE

The rapidly growing body of communications during the COVID-19 pandemic posed a challenge to information seekers, who struggled to find answers to their specific and changing information needs. We designed a Question Answering (QA) system capable of answering ad-hoc questions about the COVID-19 disease, its causal virus SARS-CoV-2, and the recommended response to the pandemic.

MATERIALS AND METHODS

The QA system incorporates, in addition to relevance models, automatic generation of questions from relevant sentences. We relied on entailment between questions for (1) pinpointing answers and (2) selecting novel answers early in the list of its results.

RESULTS

The QA system produced state-of-the-art results when processing questions asked by experts (eg, researchers, scientists, or clinicians) and competitive results when processing questions asked by consumers of health information. Although state-of-the-art models for question generation and question entailment were used, more than half of the answers were missed, due to the limitations of the relevance models employed.

DISCUSSION

Although question entailment enabled by automatic question generation is the cornerstone of our QA system's architecture, question entailment did not prove to always be reliable or sufficient in ranking the answers. Question entailment should be enhanced with additional inferential capabilities.

CONCLUSION

The QA system presented in this article produced state-of-the-art results processing expert questions and competitive results processing consumer questions. Improvements should be considered by using better relevance models and enhanced inference methods. Moreover, experts and consumers have different answer expectations, which should be accounted for in future QA development.

摘要

目的

在 COVID-19 大流行期间,通讯数量迅速增加,这给信息搜索者带来了挑战,他们难以找到针对其特定且不断变化的信息需求的答案。我们设计了一个问答(QA)系统,能够回答有关 COVID-19 疾病、其致病病毒 SARS-CoV-2 以及对大流行的建议应对措施的临时问题。

材料与方法

除了相关性模型外,QA 系统还结合了从相关句子中自动生成问题的功能。我们依赖于问题之间的蕴涵关系,用于(1)精确定位答案,(2)在答案列表的早期选择新颖的答案。

结果

当处理专家(例如研究人员、科学家或临床医生)提出的问题时,QA 系统产生了最先进的结果,当处理健康信息消费者提出的问题时,也产生了具有竞争力的结果。尽管使用了最先进的问题生成和问题蕴涵模型,但由于所使用的相关性模型的局限性,仍有一半以上的答案被遗漏。

讨论

尽管自动问题生成所启用的问题蕴涵是 QA 系统架构的基石,但在答案排序方面,问题蕴涵并不总是可靠或充分的。问题蕴涵应通过额外的推理能力加以增强。

结论

本文介绍的 QA 系统在处理专家问题时产生了最先进的结果,在处理消费者问题时也取得了具有竞争力的结果。应考虑使用更好的相关性模型和增强的推理方法来进行改进。此外,专家和消费者对答案有不同的期望,这在未来的 QA 开发中应加以考虑。

相似文献

2
A question-entailment approach to question answering.问题蕴涵方法在问答中的应用。
BMC Bioinformatics. 2019 Oct 22;20(1):511. doi: 10.1186/s12859-019-3119-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验