Franceschini Marco, Crosta Martina, Ferreira Rúben R, Poletto Daniele, Demitri Nicola, Zobel J Patrick, González Leticia, Bonifazi Davide
Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.
Elettra - Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy.
J Am Chem Soc. 2022 Nov 30;144(47):21470-21484. doi: 10.1021/jacs.2c06803. Epub 2022 Nov 17.
Here, we report the synthesis of BN-doped graphenoid nanoribbons, in which peripheral carbon atoms at the zigzag edges have been selectively replaced by boron and nitrogen atoms as BN and NBN motifs. This includes high-yielding ring closure key steps that, through -directed borylation reaction using solely BBr, allow the planarization of -oligoarylenyl precursors, through the formation of B-N and B-C bonds, to give ter-, quater-, quinque-, and sexi-arylenyl nanoribbons. X-ray single-crystal diffraction studies confirmed the formation of the BN and NBN motifs and the zigzag-edged topology of the regularly doped ribbons. Steady-state absorption and emission investigations at room temperature showed a systematic bathochromic shift of the UV-vis absorption and emission envelopes upon elongation of the oligoarylenyl backbone, with the nanoribbon emission featuring a TADF component. All derivatives displayed phosphorescence at 77 K. Electrochemical studies showed that the π-extension of the -acenoacene framework provokes a lowering of the first oxidative event (from 0.83 to 0.40 V), making these nanoribbons optimal candidates to engineer -type organic semiconductors.
在此,我们报告了硼氮掺杂类石墨烯纳米带的合成,其中锯齿边缘的外围碳原子已被硼和氮原子选择性取代,形成硼氮(BN)和氮硼氮(NBN)结构单元。这包括高产率的闭环关键步骤,通过仅使用BBr₃的定向硼化反应,利用形成硼氮(B-N)键和硼碳(B-C)键,使低聚亚芳基前体平面化,从而得到三、四、五和六亚芳基纳米带。X射线单晶衍射研究证实了BN和NBN结构单元的形成以及规则掺杂纳米带的锯齿边缘拓扑结构。室温下的稳态吸收和发射研究表明,随着低聚亚芳基主链的延长,紫外-可见吸收和发射包络线出现系统性的红移,纳米带发射具有热激活延迟荧光(TADF)成分。所有衍生物在77 K时均显示出磷光。电化学研究表明,苊烯骨架的π-延伸导致首次氧化事件的电位降低(从0.83 V降至0.40 V),使这些纳米带成为构建n型有机半导体的理想候选材料。