Suppr超能文献

迈向中国更高效的低碳农业技术推广:识别带头小农户及其行为决定因素

Towards more efficient low-carbon agricultural technology extension in China: identifying lead smallholder farmers and their behavioral determinants.

作者信息

Li Kai, Li Qi

机构信息

School of Economics, Qufu Normal University, Room 720, 80 Yantai North Road, Rizhao, 276826, China.

出版信息

Environ Sci Pollut Res Int. 2023 Feb;30(10):27833-27845. doi: 10.1007/s11356-022-24159-2. Epub 2022 Nov 17.

Abstract

In the transition to low-carbon agriculture, smallholder farmers face more constraints. Identifying lead smallholder farmers and leveraging their peer effects can accelerate low-carbon agricultural technology extension among smallholder farmers. Based on survey data from 643 rice farmers in Zhejiang Province, China, this study constructs a finite mixture model (FMM) to identify lead smallholder farmers and then uses a quantile regression model (QRM) to explore their behavioral determinants. The main conclusions are as follows. First, despite the homogeneity in the production mode and resource constraints, lead smallholder farmers are younger and more open to risk, and they have higher educational levels and more family laborers. Second, a higher use efficiency of heterogeneous information is the key to differentiating lead smallholder farmers from other smallholder farmers. Third, green agricultural producer services can effectively alleviate resource constraints and contribute to the low-carbon transition of all smallholder farmers. These results can help redesign targeted extension policies to incentivize lead smallholder farmers.

摘要

在向低碳农业转型的过程中,小农户面临着更多的制约因素。识别引领型小农户并利用他们的同伴效应,可以加速低碳农业技术在小农户中的推广。基于对中国浙江省643名稻农的调查数据,本研究构建了一个有限混合模型(FMM)来识别引领型小农户,然后使用分位数回归模型(QRM)来探究他们的行为决定因素。主要结论如下。第一,尽管生产模式和资源约束具有同质性,但引领型小农户更年轻,对风险更开放,他们的教育水平更高,家庭劳动力更多。第二,更高的异质信息利用效率是区分引领型小农户和其他小农户的关键。第三,绿色农业生产者服务可以有效缓解资源约束,并有助于所有小农户的低碳转型。这些结果有助于重新设计有针对性的推广政策,以激励引领型小农户。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验