Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.
JAMA Oncol. 2023 Jan 1;9(1):51-60. doi: 10.1001/jamaoncol.2022.4933.
Currently, predictive biomarkers for response to immune checkpoint inhibitor (ICI) therapy in lung cancer are limited. Identifying such biomarkers would be useful to refine patient selection and guide precision therapy.
To develop a machine-learning (ML)-based tumor-infiltrating lymphocytes (TILs) scoring approach, and to evaluate TIL association with clinical outcomes in patients with advanced non-small cell lung cancer (NSCLC).
DESIGN, SETTING, AND PARTICIPANTS: This multicenter retrospective discovery-validation cohort study included 685 ICI-treated patients with NSCLC with median follow-up of 38.1 and 43.3 months for the discovery (n = 446) and validation (n = 239) cohorts, respectively. Patients were treated between February 2014 and September 2021. We developed an ML automated method to count tumor, stroma, and TIL cells in whole-slide hematoxylin-eosin-stained images of NSCLC tumors. Tumor mutational burden (TMB) and programmed death ligand-1 (PD-L1) expression were assessed separately, and clinical response to ICI therapy was determined by medical record review. Data analysis was performed from June 2021 to April 2022.
All patients received anti-PD-(L)1 monotherapy.
Objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) were determined by blinded medical record review. The area under curve (AUC) of TIL levels, TMB, and PD-L1 in predicting ICI response were calculated using ORR.
Overall, there were 248 (56%) women in the discovery cohort and 97 (41%) in the validation cohort. In a multivariable analysis, high TIL level (≥250 cells/mm2) was independently associated with ICI response in both the discovery (PFS: HR, 0.71; P = .006; OS: HR, 0.74; P = .03) and validation (PFS: HR = 0.80; P = .01; OS: HR = 0.75; P = .001) cohorts. Survival benefit was seen in both first- and subsequent-line ICI treatments in patients with NSCLC. In the discovery cohort, the combined models of TILs/PD-L1 or TMB/PD-L1 had additional specificity in differentiating ICI responders compared with PD-L1 alone. In the PD-L1 negative (<1%) subgroup, TIL levels had superior classification accuracy for ICI response (AUC = 0.77) compared with TMB (AUC = 0.65).
In these cohorts, TIL levels were robustly and independently associated with response to ICI treatment. Patient TIL assessment is relatively easily incorporated into the workflow of pathology laboratories at minimal additional cost, and may enhance precision therapy.
目前,预测肺癌免疫检查点抑制剂(ICI)治疗反应的预测生物标志物有限。识别此类生物标志物将有助于完善患者选择并指导精准治疗。
开发一种基于机器学习(ML)的肿瘤浸润淋巴细胞(TIL)评分方法,并评估 TIL 与晚期非小细胞肺癌(NSCLC)患者临床结局的相关性。
设计、地点和参与者:这是一项多中心回顾性发现-验证队列研究,纳入了 685 名接受 ICI 治疗的 NSCLC 患者,发现队列的中位随访时间为 38.1 个月,验证队列为 43.3 个月(n=446)。患者于 2014 年 2 月至 2021 年 9 月间接受治疗。我们开发了一种 ML 自动方法来计算 NSCLC 肿瘤全片苏木精-伊红染色图像中的肿瘤、基质和 TIL 细胞。分别评估肿瘤突变负担(TMB)和程序性死亡配体-1(PD-L1)表达,并通过病历回顾确定 ICI 治疗的临床反应。数据分析于 2021 年 6 月至 2022 年 4 月进行。
所有患者均接受抗 PD-(L)1 单药治疗。
通过盲法病历回顾确定客观缓解率(ORR)、无进展生存期(PFS)和总生存期(OS)。使用 ORR 计算 TIL 水平、TMB 和 PD-L1 预测 ICI 反应的曲线下面积(AUC)。
在发现队列中,共有 248 名(56%)女性,验证队列中有 97 名(41%)女性。多变量分析显示,高 TIL 水平(≥250 个细胞/mm2)与发现队列(PFS:HR,0.71;P=0.006;OS:HR,0.74;P=0.03)和验证队列(PFS:HR=0.80;P=0.01;OS:HR=0.75;P=0.001)中的 ICI 反应独立相关。在接受 NSCLC 治疗的患者中,无论一线还是二线 ICI 治疗,均能观察到生存获益。在发现队列中,与单独的 PD-L1 相比,TILs/PD-L1 或 TMB/PD-L1 联合模型在区分 ICI 应答者方面具有更高的特异性。在 PD-L1 阴性(<1%)亚组中,TIL 水平对 ICI 反应的分类准确性优于 TMB(AUC=0.77 比 AUC=0.65)。
在这些队列中,TIL 水平与 ICI 治疗反应之间存在稳健且独立的相关性。患者 TIL 评估相对容易纳入病理实验室的工作流程,且几乎不增加额外成本,可能会增强精准治疗。