Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia.
Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia.
J Mol Diagn. 2023 Feb;25(2):94-109. doi: 10.1016/j.jmoldx.2022.10.003. Epub 2022 Nov 15.
Identifying tumor DNA mismatch repair deficiency (dMMR) is important for precision medicine. Tumor features, individually and in combination, derived from whole-exome sequenced (WES) colorectal cancers (CRCs) and panel-sequenced CRCs, endometrial cancers (ECs), and sebaceous skin tumors (SSTs) were assessed for their accuracy in detecting dMMR. CRCs (n = 300) with WES, where mismatch repair status was determined by immunohistochemistry, were assessed for microsatellite instability (MSMuTect, MANTIS, MSIseq, and MSISensor), Catalogue of Somatic Mutations in Cancer tumor mutational signatures, and somatic mutation counts. A 10-fold cross-validation approach (100 repeats) evaluated the dMMR prediction accuracy for i) individual features, ii) Lasso statistical model, and iii) an additive feature combination approach. Panel-sequenced tumors (29 CRCs, 22 ECs, and 20 SSTs) were assessed for the top performing dMMR predicting features/models using these three approaches. For WES CRCs, 10 features provided >80% dMMR prediction accuracy, with MSMuTect, MSIseq, and MANTIS achieving ≥99% accuracy. The Lasso model achieved 98.3% accuracy. The additive feature approach, with three or more of six of MSMuTect, MANTIS, MSIseq, MSISensor, insertion-deletion count, or tumor mutational signature small insertion/deletion 2 + small insertion/deletion 7 achieved 99.7% accuracy. For the panel-sequenced tumors, the additive feature combination approach of three or more of six achieved accuracies of 100%, 95.5%, and 100% for CRCs, ECs, and SSTs, respectively. The microsatellite instability calling tools performed well in WES CRCs; however, an approach combining tumor features may improve dMMR prediction in both WES and panel-sequenced data across tissue types.
鉴定肿瘤 DNA 错配修复缺陷(dMMR)对于精准医学很重要。评估来自全外显子组测序(WES)结直肠癌(CRC)和面板测序 CRC、子宫内膜癌(EC)和皮脂腺皮肤肿瘤(SST)的肿瘤特征,包括单个特征和组合特征,以评估其在检测 dMMR 方面的准确性。评估了 300 例具有 WES 的 CRC,其中错配修复状态通过免疫组织化学确定,评估了微卫星不稳定性(MSMuTect、MANTIS、MSIseq 和 MSISensor)、癌症体细胞突变目录肿瘤突变特征和体细胞突变计数。采用 10 倍交叉验证方法(100 次重复)评估了 i)单个特征、ii)Lasso 统计模型和 iii)加性特征组合方法对 dMMR 的预测准确性。使用这三种方法评估了 panel-sequenced 肿瘤(29 例 CRC、22 例 EC 和 20 例 SST)对预测 dMMR 表现最佳的特征/模型。对于 WES CRC,10 个特征提供了 >80%的 dMMR 预测准确性,MSMuTect、MSIseq 和 MANTIS 达到了 ≥99%的准确性。Lasso 模型达到了 98.3%的准确性。加性特征方法,使用 MSMuTect、MANTIS、MSIseq、MSISensor、插入缺失计数或肿瘤突变特征小插入/缺失 2 + 小插入/缺失 7 中的三个或更多特征,达到了 99.7%的准确性。对于 panel-sequenced 肿瘤,加性特征组合方法在三个或更多的 6 个特征的情况下,CRC、EC 和 SST 的准确率分别达到 100%、95.5%和 100%。微卫星不稳定性检测工具在 WES CRC 中表现良好;然而,结合肿瘤特征的方法可能会提高 WES 和 panel-sequenced 数据在不同组织类型中 dMMR 的预测。