Subhedar A
Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Phys Rev E. 2022 Oct;106(4-2):045308. doi: 10.1103/PhysRevE.106.045308.
We present a color-gradient-based lattice Boltzmann model for immiscible fluids with a large density contrast. The model employs the velocity-based equilibrium distribution function, initially proposed for the phase-field-based model by Zu and He [Phys. Rev. E 87, 043301 (2013)1539-375510.1103/PhysRevE.87.043301], with a modification necessary to satisfy the kinematic condition at the interface. Different from the existing color-gradient models, the present model allows to specify interface mobility that is independent of the fluid density ratio. Further, we provide a unified framework, which uses the recursive representation of the lattice Boltzmann equation, to derive the governing equations of the system. The emergent color dynamics thus obtained, through an analysis of the segregation operator, is shown to obey the locally conservative Allen-Cahn equation. We use a series of benchmarks, which include a stationary drop, a layered Poiseuille flow, translation of a drop under a forced velocity field, the Rayleigh-Taylor instability, and the capillary intrusion test to demonstrate the model's ability in dealing with complex flow problems.
我们提出了一种基于颜色梯度的格子玻尔兹曼模型,用于处理具有大密度差的不混溶流体。该模型采用基于速度的平衡分布函数,该函数最初由Zu和He [《物理评论E》87, 043301 (2013)1539 - 375510.1103/PhysRevE.87.043301] 为基于相场的模型提出,并进行了必要的修改以满足界面处的运动学条件。与现有的颜色梯度模型不同,本模型允许指定与流体密度比无关的界面迁移率。此外,我们提供了一个统一的框架,该框架使用格子玻尔兹曼方程的递归表示来推导系统的控制方程。通过对分离算子的分析,由此获得的涌现颜色动力学被证明服从局部守恒的艾伦 - 卡恩方程。我们使用一系列基准测试,包括静态液滴、分层泊肃叶流、在强制速度场下液滴的平移、瑞利 - 泰勒不稳定性以及毛细管侵入测试,来证明该模型处理复杂流动问题的能力。