Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
ACS Appl Mater Interfaces. 2022 Nov 30;14(47):52618-52633. doi: 10.1021/acsami.2c12918. Epub 2022 Nov 17.
Biohybrid materials, which are defined as engineered functional materials combining living components with nonliving synthetic materials, are considered promising bioactive materials for applications in in vivo tissue engineering. However, the rational design of biohybrid materials applicable to in vivo tissue engineering faces major challenges associated with techniques for combining living cells with nonliving synthetic materials and cell sources. Here, we report injectable covalent stem cell-combing biohybrid materials prepared via a bio-orthogonal click cross-linking reaction of azide-modified adipose-derived stem cells (N[+]ADSCs), one of the most promising cell sources utilized clinically, with alkyne-modified biocompatible alginate polymers. The mechanical properties of the covalent stem cell-combining biohybrid materials can be adapted to the mechanical properties of the surrounding environment in which they are transplanted by alternating the number of N[+]ADSCs, the concentration of alkyne-modified alginate, and the number of alkyne groups. Importantly, ADSCs in the covalent biohybrid materials expressed a high level of CD-105, a marker for undifferentiated mesenchymal stem cells, in the body in the absence of differentiation signals, whereas very little CD-105 was expressed in the control physical cell-loading materials, demonstrating that this covalent stem cell-combining approach results in enhanced retention of the material's "stemness" and controlled differentiation in the body. We assessed the potential utility of the covalent stem cell-combining biohybrid materials for in vivo tissue engineering using a murine severe skeletal muscle defect-healing model. Importantly, all of the tissues regenerated by the covalent biohybrid material treatment expressed MYH3, a myogenic marker protein, whereas no expression of MYH3 was detected in the tissues reconstructed by treatment with control physical stem cell-loading materials and Matrigel, indicating that this covalent stem cell-combining approach results in controlled differentiation in the body. Our data demonstrate the potential utility of covalent stem cell-combining biohybrid materials with host tissue-integrative and controlled differentiation capabilities available for in vivo tissue engineering.
生物杂交材料被定义为将活的成分与非生物合成材料相结合的工程功能材料,被认为是有前途的生物活性材料,可用于体内组织工程。然而,合理设计适用于体内组织工程的生物杂交材料面临着与将活细胞与非生物合成材料和细胞来源相结合的技术相关的重大挑战。在这里,我们报告了一种可注射的共价干细胞结合生物杂交材料,它是通过一种生物正交点击交联反应制备的,该反应涉及叠氮修饰的脂肪来源干细胞(N[+]ADSCs)和炔基修饰的生物相容性海藻酸盐聚合物,N[+]ADSCs 是临床应用中最有前途的细胞来源之一。共价干细胞结合生物杂交材料的机械性能可以通过改变 N[+]ADSCs 的数量、炔基修饰的海藻酸盐的浓度和炔基基团的数量来适应其移植的周围环境的机械性能。重要的是,在没有分化信号的情况下,共价生物杂交材料中的 ADSCs 在体内表达高水平的 CD-105,这是未分化间充质干细胞的标志物,而在对照物理细胞负载材料中几乎没有表达 CD-105,表明这种共价干细胞结合方法导致材料的“干性”得到增强并在体内得到控制分化。我们使用鼠严重骨骼肌缺陷愈合模型评估了共价干细胞结合生物杂交材料在体内组织工程中的潜在用途。重要的是,用共价生物杂交材料处理的所有组织都表达了 MYH3,一种肌生成标志物蛋白,而用对照物理干细胞负载材料和 Matrigel 处理的组织中没有检测到 MYH3 的表达,这表明这种共价干细胞结合方法导致了体内的控制分化。我们的数据表明,具有宿主组织整合和控制分化能力的共价干细胞结合生物杂交材料在体内组织工程中有潜在的应用。