Ansari Sahar, Chen Chider, Xu Xingtian, Annabi Nasim, Zadeh Homayoun H, Wu Benjamin M, Khademhosseini Ali, Shi Songtao, Moshaverinia Alireza
Division of Growth and Development, School of Dentistry, University of California, Los Angeles, CA, USA.
School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Ann Biomed Eng. 2016 Jun;44(6):1908-20. doi: 10.1007/s10439-016-1594-6. Epub 2016 Mar 23.
Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p < 0.05). Altogether, our findings confirmed that GMSCs encapsulated in RGD-modified alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.
创伤性损伤或肌肉疾病后肌肉组织的修复和再生常常带来具有挑战性的临床情况。如果大量组织丢失,骨骼肌的天然再生潜力将无法生长以完全填充缺损部位。与现有的治疗方式相比,牙源性间充质干细胞(MSCs)与合适的支架材料相结合,为肌肉组织工程提供了一种有利的替代治疗选择。迄今为止,尚无关于牙龈间充质干细胞(GMSCs)在用于肌肉组织工程的三维支架中的应用报道。本研究的目的是开发一种具有多种生长因子递送能力的可注射三维RGD偶联藻酸盐支架,用于封装GMSCs,并评估封装的GMSCs在体外和体内分化为成肌组织的能力,其中将封装有GMSCs的材料皮下移植到免疫受损小鼠体内。结果表明,在体外分化4周后,GMSCs以及阳性对照人骨髓间充质干细胞(hBMMSCs)呈现出肌肉细胞样形态,通过定量聚合酶链反应(qPCR)测量,与肌肉再生相关的基因标记物(MyoD、Myf5和MyoG)的mRNA表达水平较高。我们的定量PCR分析表明,RGD偶联藻酸盐的硬度调节封装的GMSCs的成肌分化。对成肌组织特异性蛋白质标记物的组织学和免疫组织化学/荧光染色证实了我们体内动物模型皮下移植中的肌肉再生。与hBMMSCs相比,GMSCs表现出显著更强的成肌再生能力(p < 0.05)。总之,我们的研究结果证实,封装在具有多种生长因子递送能力的RGD修饰藻酸盐水凝胶中的GMSCs是肌肉组织工程的一个有前途的候选者。