Suppr超能文献

用于多癌早期检测的游离DNA方法评估。

Evaluation of cell-free DNA approaches for multi-cancer early detection.

作者信息

Jamshidi Arash, Liu Minetta C, Klein Eric A, Venn Oliver, Hubbell Earl, Beausang John F, Gross Samuel, Melton Collin, Fields Alexander P, Liu Qinwen, Zhang Nan, Fung Eric T, Kurtzman Kathryn N, Amini Hamed, Betts Craig, Civello Daniel, Freese Peter, Calef Robert, Davydov Konstantin, Fayzullina Saniya, Hou Chenlu, Jiang Roger, Jung Byoungsok, Tang Susan, Demas Vasiliki, Newman Joshua, Sakarya Onur, Scott Eric, Shenoy Archana, Shojaee Seyedmehdi, Steffen Kristan K, Nicula Virgil, Chien Tom C, Bagaria Siddhartha, Hunkapiller Nathan, Desai Mohini, Dong Zhao, Richards Donald A, Yeatman Timothy J, Cohn Allen L, Thiel David D, Berry Donald A, Tummala Mohan K, McIntyre Kristi, Sekeres Mikkael A, Bryce Alan, Aravanis Alexander M, Seiden Michael V, Swanton Charles

机构信息

GRAIL, LLC, Menlo Park, CA 94025, USA.

Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

Cancer Cell. 2022 Dec 12;40(12):1537-1549.e12. doi: 10.1016/j.ccell.2022.10.022. Epub 2022 Nov 17.

Abstract

In the Circulating Cell-free Genome Atlas (NCT02889978) substudy 1, we evaluate several approaches for a circulating cell-free DNA (cfDNA)-based multi-cancer early detection (MCED) test by defining clinical limit of detection (LOD) based on circulating tumor allele fraction (cTAF), enabling performance comparisons. Among 10 machine-learning classifiers trained on the same samples and independently validated, when evaluated at 98% specificity, those using whole-genome (WG) methylation, single nucleotide variants with paired white blood cell background removal, and combined scores from classifiers evaluated in this study show the highest cancer signal detection sensitivities. Compared with clinical stage and tumor type, cTAF is a more significant predictor of classifier performance and may more closely reflect tumor biology. Clinical LODs mirror relative sensitivities for all approaches. The WG methylation feature best predicts cancer signal origin. WG methylation is the most promising technology for MCED and informs development of a targeted methylation MCED test.

摘要

在循环游离基因组图谱(NCT02889978)子研究1中,我们通过基于循环肿瘤等位基因分数(cTAF)定义临床检测限(LOD),评估了几种基于循环游离DNA(cfDNA)的多癌早期检测(MCED)测试方法,从而能够进行性能比较。在对相同样本进行训练并独立验证的10种机器学习分类器中,当以98%的特异性进行评估时,使用全基因组(WG)甲基化、去除配对白细胞背景的单核苷酸变异以及本研究中评估的分类器综合评分的分类器显示出最高的癌症信号检测灵敏度。与临床分期和肿瘤类型相比,cTAF是分类器性能更重要的预测指标,可能更能反映肿瘤生物学特性。临床LOD反映了所有方法的相对灵敏度。WG甲基化特征最能预测癌症信号来源。WG甲基化是MCED最有前景的技术,并为靶向甲基化MCED测试的开发提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验