免疫肿瘤学转化研究的新兴技术:聚焦非小细胞肺癌
Emerging Techniques of Translational Research in Immuno-Oncology: A Focus on Non-Small Cell Lung Cancer.
作者信息
Guardamagna Mora, Zamorano Eduardo, Albarrán-Artahona Victor, Mesas Andres, Benitez Jose Carlos
机构信息
Department of Cancer Medicine, Gustave Roussy, Paris-Saclay University, 94805 Villejuif, France.
Thoracic Tumors Unit, Medical Oncology Department, Virgen de la Victoria University Hospital, IBIMA, 29010 Málaga, Spain.
出版信息
Cancers (Basel). 2025 Jul 4;17(13):2244. doi: 10.3390/cancers17132244.
The advent of personalized medicine and novel therapeutic strategies has transformed the treatment landscape of non-small cell lung cancer (NSCLC), significantly improving patient survival. However, only a minority of patients experience a durable benefit, as intrinsic or acquired resistance remains a major challenge. Understanding the complex mechanisms of resistance-linked to tumor biology, the tumor microenvironment (TME), and host factors-is crucial to overcoming these barriers. Recent innovations in diagnostics, including artificial intelligence and liquid biopsy, offer promising tools to refine therapeutic decisions. Machine Learning and Deep Learning provide predictive algorithms that enhance diagnostic accuracy and prognostic assessment. Techniques like single-cell RNA sequencing and pathomics offer deeper insights into the role of the TME. Liquid biopsy, as a minimally invasive method, enables real-time detection of circulating tumor components, facilitating the identification of predictive and prognostic biomarkers and illuminating tumor heterogeneity. These translational research advances are revolutionizing the understanding of cancer biology and are key to optimizing personalized treatment strategies. This review highlights emerging tools aimed at improving diagnostic and therapeutic precision in NSCLC, underscoring their role in decoding the interplay between tumor cells, the TME, and the host to ultimately improve patient outcomes.
个性化医疗和新型治疗策略的出现改变了非小细胞肺癌(NSCLC)的治疗格局,显著提高了患者生存率。然而,只有少数患者能获得持久益处,因为内在或获得性耐药仍然是一个重大挑战。了解与肿瘤生物学、肿瘤微环境(TME)和宿主因素相关的复杂耐药机制对于克服这些障碍至关重要。诊断方面的最新创新,包括人工智能和液体活检,为优化治疗决策提供了有前景的工具。机器学习和深度学习提供了预测算法,可提高诊断准确性和预后评估。单细胞RNA测序和病理组学等技术能更深入地了解TME的作用。液体活检作为一种微创方法,能够实时检测循环肿瘤成分,有助于识别预测性和预后生物标志物,并揭示肿瘤异质性。这些转化研究进展正在彻底改变对癌症生物学的理解,是优化个性化治疗策略的关键。本综述重点介绍了旨在提高NSCLC诊断和治疗精准度的新兴工具,强调了它们在解读肿瘤细胞、TME和宿主之间相互作用以最终改善患者预后方面的作用。