Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands; Experimental and Applied Psychology, VU University, De Boelelaan 1105, 1081 HV Amsterdam, Netherlands.
Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands.
J Neurosci Methods. 2023 Jan 15;384:109746. doi: 10.1016/j.jneumeth.2022.109746. Epub 2022 Nov 17.
Functional magnetic resonance imaging (fMRI), typically using blood oxygenation level-dependent (BOLD) contrast weighted imaging, allows the study of brain function with millimeter spatial resolution and temporal resolution of one to a few seconds. At a mesoscopic scale, neurons in the human brain are spatially organized in structures with dimensions of hundreds of micrometers, while they communicate at the millisecond timescale. For this reason, it is important to develop an fMRI method with simultaneous high spatial and temporal resolution. Line-scanning promises to reach this goal at the cost of volume coverage.
Here, we release a comprehensive update to human line-scanning fMRI. First, we investigated multi-echo line-scanning with five different protocols varying the number of echoes and readout bandwidth while keeping the TR constant. In these, we compared different echo combination approaches in terms of BOLD activation (sensitivity) and temporal signal-to-noise ratio. Second, we implemented an adaptation of NOise reduction with DIstribution Corrected principal component analysis (NORDIC) thermal noise removal for line-scanning fMRI data. Finally, we tested three image-based navigators for motion correction and investigated different ways of performing fMRI analysis on the timecourses which were influenced by the insertion of the navigators themselves.
The presented improvements are relatively straightforward to implement; multi-echo readout and NORDIC denoising together, significantly improve data quality in terms of tSNR and t-statistical values, while motion correction makes line-scanning fMRI more robust.
Multi-echo acquisitions and denoising have previously been applied in 3D magnetic resonance imaging. Their combination and application to 1D line-scanning is novel. The current proposed method greatly outperforms the previous line-scanning acquisitions with single-echo acquisition, in terms of tSNR (4.0 for single-echo line-scanning and 36.2 for NORDIC-denoised multi-echo) and t-statistical values (3.8 for single-echo line-scanning and 25.1 for NORDIC-denoised multi-echo line-scanning).
Line-scanning fMRI was advanced compared to its previous implementation in order to improve sensitivity and reliability. The improved line-scanning acquisition could be used, in the future, for neuroscientific and clinical applications.
功能磁共振成像(fMRI),通常使用血氧水平依赖(BOLD)对比加权成像,可以以毫米级的空间分辨率和 1 到几秒钟的时间分辨率研究大脑功能。在介观尺度上,人类大脑中的神经元在具有数百微米尺寸的结构中进行空间组织,而它们在毫秒时间尺度上进行通信。因此,开发具有同时高空间和时间分辨率的 fMRI 方法非常重要。线扫描有望在牺牲体积覆盖范围的情况下实现这一目标。
在这里,我们发布了一个全面的更新版本的人类线扫描 fMRI。首先,我们研究了具有五个不同协议的多回波线扫描,这些协议在保持 TR 不变的情况下改变了回波数量和读出带宽。在这些协议中,我们根据 BOLD 激活(灵敏度)和时间信号到噪声比比较了不同的回波组合方法。其次,我们实现了用于线扫描 fMRI 数据的噪声减少与分布校正主成分分析(NORDIC)热噪声去除的适应。最后,我们测试了三种基于图像的导航器进行运动校正,并研究了不同的方法在线扫描时间序列上执行 fMRI 分析,这些时间序列受到导航器本身插入的影响。
所提出的改进相对简单易行;多回波读出和 NORDIC 去噪一起使用,大大提高了 tSNR 和 t 统计值的数据质量,而运动校正使线扫描 fMRI 更具鲁棒性。
多回波采集和去噪以前已应用于 3D 磁共振成像。它们的组合和应用于 1D 线扫描是新颖的。就 tSNR(单回波线扫描为 4.0,NORDIC 去噪多回波为 36.2)和 t 统计值(单回波线扫描为 3.8,NORDIC 去噪多回波线扫描为 25.1)而言,当前提出的方法大大优于以前的单回波线扫描采集。
为了提高灵敏度和可靠性,对线扫描 fMRI 进行了改进。改进后的线扫描采集可用于未来的神经科学和临床应用。