Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Cognitive Neuroscience & Neurotechnology Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
Philos Trans R Soc Lond B Biol Sci. 2024 Dec 2;379(1915):20230085. doi: 10.1098/rstb.2023.0085. Epub 2024 Oct 21.
Technological advances in fMRI including ultra-high magnetic fields (≥ 7 T) and acquisition methods that increase spatial specificity have paved the way for studies of the human cortex at the scale of layers and columns. This mesoscopic scale promises an improved mechanistic understanding of human cortical function so far only accessible to invasive animal neurophysiology. In recent years, an increasing number of studies have applied such methods to better understand the cortical function in perception and cognition. This future perspective article asks whether closed-loop fMRI studies could equally benefit from these methods to achieve layer and columnar specificity. We outline potential applications and discuss the conceptual and concrete challenges, including data acquisition and volitional control of mesoscopic brain activity. We anticipate an important role of fMRI with mesoscopic resolution for closed-loop fMRI and neurofeedback, yielding new insights into brain function and potentially clinical applications.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
功能磁共振成像技术的进步,包括超高磁场(≥7T)和提高空间特异性的采集方法,为研究人类皮层的层和柱规模铺平了道路。这种介观尺度有望在一定程度上提高对人类皮层功能的机械理解,而这种理解目前只能通过侵入性动物神经生理学来实现。近年来,越来越多的研究应用这些方法来更好地理解感知和认知中的皮层功能。本文探讨了闭环 fMRI 研究是否同样可以受益于这些方法来实现层和柱特异性。我们概述了潜在的应用,并讨论了概念和具体的挑战,包括数据采集和介观脑活动的自主控制。我们预计,具有介观分辨率的 fMRI 在闭环 fMRI 和神经反馈中具有重要作用,为大脑功能提供新的见解,并可能有临床应用。本文是主题为“神经反馈:内源性神经调节的新领域和神经认知机制”的一部分。