Suppr超能文献

电化学重构 NiFe/NiFeOOH 超顺磁核/催化壳异质结构以增强析氧反应的磁热效应。

Electrochemical Reconstruction of NiFe/NiFeOOH Superparamagnetic Core/Catalytic Shell Heterostructure for Magnetic Heating Enhancement of Oxygen Evolution Reaction.

机构信息

Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China.

Analytical & Testing Center, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China.

出版信息

Small. 2023 Jan;19(3):e2205665. doi: 10.1002/smll.202205665. Epub 2022 Nov 20.

Abstract

Although (oxy)hydroxides generated by electrochemical reconstruction (EC-reconstruction) of transition-metal catalysts exhibit highly catalytic activities, the amorphous nature fundamentally impedes the electrochemical kinetics due to its poor electrical conductivity. Here, EC-reconstructed NiFe/NiFeOOH core/shell nanoparticles in highly conductive carbon matrix based on the pulsed laser deposition prepared NiFe nanoparticles is successfully confined. Electrochemical characterizations and first-principles calculations demonstrate that the reconstructed NiFe/NiFeOOH core/shell nanoparticles exhibit high oxygen evolution reaction (OER) electrocatalytic activity (a low overpotential of 342.2 mV for 10 mA cm ) and remarkable durability due to the efficient charge transfer in the highly conductive confined heterostructure. More importantly, benefit from the superparamagnetic nature of the reconstructed NiFe/NiFeOOH core/shell nanoparticles, a large OER improvement is achieved (an ultralow overpotential of 209.2 mV for 10 mA cm ) with an alternating magnetic field stimulation. Such OER improvement can be attributed to the Néel relaxation related magnetic heating effect functionalized superparamagnetic NiFe cores, which are generally underutilized in reconstructed core/shell nanoparticles. This work demonstrates that the designed superparamagnetic core/shell nanoparticles, combined with the large improvement by magnetic heating effect, are expected to be highly efficient OER catalysts along with the confined structure guaranteed high conductivity and catalytic stability.

摘要

虽然通过过渡金属催化剂的电化学重构(EC-重构)生成的(氧)氢氧化物表现出高催化活性,但由于其导电性差,非晶态本质上阻碍了电化学动力学。在这里,基于脉冲激光沉积制备的 NiFe 纳米颗粒,成功地将基于高导电性碳基质的 EC 重构 NiFe/NiFeOOH 核/壳纳米粒子限制在其中。电化学特性和第一性原理计算表明,重构的 NiFe/NiFeOOH 核/壳纳米粒子由于在高导电性受限异质结构中实现了高效电荷转移,表现出高的析氧反应(OER)电催化活性(10 mA cm 时的过电位低至 342.2 mV)和显著的耐久性。更重要的是,得益于重构的 NiFe/NiFeOOH 核/壳纳米粒子的超顺磁性质,在交变磁场刺激下,OER 得到了很大的改善(10 mA cm 时的过电位低至 209.2 mV)。这种 OER 改善可以归因于基于超顺磁 NiFe 核的奈耳弛豫相关磁热效应功能化,而在重构的核/壳纳米粒子中,通常未充分利用超顺磁 NiFe 核。这项工作表明,设计的超顺磁核/壳纳米粒子与磁热效应带来的大的改善相结合,有望成为高效的 OER 催化剂,同时受限结构保证了高导电性和催化稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验