Liu Sixian, Guan Jiuhui, Yin Lei, Zhou Lue, Huang Junli, Mu Yuncheng, Han Shuyao, Pi Xiaodong, Liu Gang, Gao Pingqi, Zhou Shu
School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China.
State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
J Phys Chem Lett. 2022 Dec 1;13(47):10994-11000. doi: 10.1021/acs.jpclett.2c02900. Epub 2022 Nov 20.
Exploring new materials and structures to construct synaptic devices represents a promising route to fundamentally approach novel forms of computing. Nanocrystals (NCs) of halide perovskites possess unique charge transport characteristics, i.e., ionic-electronic coupling, holding considerable promise for energy-efficient and reconfigurable artificial synapses. Herein, we report solution-processed thin-film memristors from all-inorganic CsPbBr perovskite NCs, functioning as an electrically programmable analog memory with good stability. The devices are demonstrated to successfully emulate a number of essential synaptic functions with low power consumption, including reversible potentiation and depression, short-term plasticity (STP), paired-pulse facilitation (PPF), and long-term plasticity (LTP), such as spike-number-dependent plasticity (SNDP), spike-rate-dependent plasticity (SRDP), spike-timing-dependent plasticity (STDP), and spike-voltage-dependent plasticity (SVDP). It is proposed that a coupled capacitive and inductive phenomenon originating from charge trapping and ion migration in CsPbBr NC films, controlled by the amplitude and timing of the programming pulses, defines the degree of synaptic plasticity. A transition emerges from the fast trap-related capacitive regime to a slow ionic inductive regime, which enables continuous change of the film resistance and the magnitude of the electronic current, analogous to the synaptic weight modulation in biological synapses.
探索用于构建突触器件的新材料和结构是从根本上实现新型计算形式的一条有前途的途径。卤化物钙钛矿纳米晶体(NCs)具有独特的电荷传输特性,即离子 - 电子耦合,在节能和可重构人工突触方面具有巨大潜力。在此,我们报道了由全无机CsPbBr钙钛矿NCs制成的溶液处理薄膜忆阻器,其作为具有良好稳定性的电可编程模拟存储器发挥作用。这些器件被证明能够以低功耗成功模拟多种基本的突触功能,包括可逆增强和抑制、短期可塑性(STP)、双脉冲易化(PPF)以及长期可塑性(LTP),如脉冲数依赖可塑性(SNDP)、脉冲率依赖可塑性(SRDP)、脉冲时间依赖可塑性(STDP)和脉冲电压依赖可塑性(SVDP)。有人提出,由编程脉冲的幅度和时间控制的、源于CsPbBr NC薄膜中电荷俘获和离子迁移的电容和电感耦合现象,决定了突触可塑性的程度。从快速陷阱相关的电容状态到缓慢的离子电感状态出现了一种转变,这使得薄膜电阻和电子电流大小能够持续变化,类似于生物突触中的突触权重调制。