Suppr超能文献

用于低功耗神经形态计算的离子电渗卤化物钙钛矿漂移扩散突触

Ionotronic Halide Perovskite Drift-Diffusive Synapses for Low-Power Neuromorphic Computation.

机构信息

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.

Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Singapore.

出版信息

Adv Mater. 2018 Dec;30(51):e1805454. doi: 10.1002/adma.201805454. Epub 2018 Oct 17.

Abstract

Emulation of brain-like signal processing is the foundation for development of efficient learning circuitry, but few devices offer the tunable conductance range necessary for mimicking spatiotemporal plasticity in biological synapses. An ionic semiconductor which couples electronic transitions with drift-diffusive ionic kinetics would enable energy-efficient analog-like switching of metastable conductance states. Here, ionic-electronic coupling in halide perovskite semiconductors is utilized to create memristive synapses with a dynamic continuous transition of conductance states. Coexistence of carrier injection barriers and ion migration in the perovskite films defines the degree of synaptic plasticity, more notable for the larger organic ammonium and formamidinium cations than the inorganic cesium counterpart. Optimized pulsing schemes facilitates a balanced interplay of short- and long-term plasticity rules like paired-pulse facilitation and spike-time-dependent plasticity, cardinal for learning and computing. Trained as a memory array, halide perovskite synapses demonstrate reconfigurability, learning, forgetting, and fault tolerance analogous to the human brain. Network-level simulations of unsupervised learning of handwritten digit images utilizing experimentally derived device parameters, validates the utility of these memristors for energy-efficient neuromorphic computation, paving way for novel ionotronic neuromorphic architectures with halide perovskites as the active material.

摘要

类脑信号处理的模拟是开发高效学习电路的基础,但很少有设备能提供模拟生物突触时空可塑性所需的可调导纳范围。一种将电子跃迁与漂移扩散离子动力学相结合的离子半导体,可以实现能量高效的类似模拟的亚稳导纳状态的开关。在这里,卤化物钙钛矿半导体中的离子-电子偶联被用来创建具有导纳状态动态连续转变的忆阻突触。钙钛矿薄膜中载流子注入势垒和离子迁移的共存决定了突触可塑性的程度,对于较大的有机铵和甲脒阳离子比无机铯对应物更为明显。优化的脉冲方案促进了短期和长期可塑性规则(如成对脉冲促进和尖峰时间依赖性可塑性)的平衡相互作用,这对学习和计算至关重要。经过记忆阵列训练,卤化物钙钛矿突触表现出类似于人脑的可重构性、学习、遗忘和容错能力。利用实验得出的器件参数对手写数字图像进行无监督学习的网络级模拟,验证了这些忆阻器在能量高效神经形态计算中的实用性,为使用卤化物钙钛矿作为有源材料的新型离子电子神经形态架构铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验