Department of Chemistry, National Institute of Technology Srinagar, Srinagar, India.
Int J Phytoremediation. 2023;25(10):1269-1288. doi: 10.1080/15226514.2022.2147145. Epub 2022 Nov 20.
The world is going through a colossal drinking water scarcity. Unchecked discharge (even at trace levels) of Cr (VI) from industries into water bodies is a serious environmental concern. Here, we report waste fungal biomass (WFB) for the detoxification and removal of chromium ions. Biomass understudy was collected from fruiting bodies. WFB was used after drying and pretreatment with two distinctive chemical methods, which improved the remediation effectiveness of Cr (VI). Light microscope and Field emission Scanning microscope (FESEM) were employed to elucidate the surface morphology of waste fungal biomass. While Fourier-Transform Infrared-Spectroscopy (FTIR) and Energy Dispersive X-Ray analysis (EDAX) were deployed to explore the mechanism of interaction between Cr (VI) anion and waste fungal biomass. X-ray Photoelectron Spectroscopy (XPS) analyses demonstrated considerable conversion of Cr (VI) into nontoxic Cr (III) species. The most favorable condition for optimum Cr (VI) remediation of 99.66% by treated waste fungal biomass (TWFB) occurred at pH 3, contact time 10 min, adsorbent dosage 3 gL, Cr (VI) concentration 4 mgL, stirring speed 140 rpm, and temperature 320 K, where for untreated waste fungal biomass (UWFB) the optimum of 85% remediation occurred at a contact time 15 min, and adsorbent dosage 2 gL whereas other experimental conditions remained identical as TWFB biosorbent. Pseudo-second-order kinetics ( > 0.99) model matched the adsorption rate. And, the Freundlich isotherm model ( > 0.99) is shown to be a better match for the experimental data. The optimum amount of Cr (VI) adsorbed by the TWFB and UWFB were 205.8 ± 10.1 and 72.85 ± 2.36 mgg, respectively. Thermodynamic parameters revealed that the adsorption was spontaneous (Δ ˂ 0), endothermic (Δ > 0), and entropy-driven (Δ > 0). The generated WFB adsorbent also has significant recycling potential. After five cycles of regeneration and adsorption. It can still keep up good remediation effectiveness of Cr (VI) ions to 85.5.
世界正面临着巨大的饮用水短缺问题。工业废水中六价铬(Cr(VI))的未经处理排放(即使在痕量水平下)也是一个严重的环境问题。在这里,我们报告了利用废弃真菌生物质(WFB)来解毒和去除铬离子。研究中的生物质是从真菌子实体中收集的。WFB 在干燥后,用两种不同的化学方法进行预处理,从而提高了 Cr(VI) 的修复效果。使用了光学显微镜和场发射扫描电子显微镜(FESEM)来阐明废真菌生物质的表面形态。同时,傅里叶变换红外光谱(FTIR)和能量色散 X 射线分析(EDAX)被用来探索 Cr(VI) 阴离子与废真菌生物质之间的相互作用机制。X 射线光电子能谱(XPS)分析表明,Cr(VI) 被大量转化为无毒的 Cr(III) 物种。经处理的废真菌生物质(TWFB)在最佳条件下对 Cr(VI) 的去除率达到了 99.66%,最佳条件为 pH 值 3、接触时间 10 分钟、吸附剂用量 3 gL、Cr(VI) 浓度 4 mgL、搅拌速度 140 rpm 和温度 320 K,而未经处理的废真菌生物质(UWFB)在最佳条件下对 Cr(VI) 的去除率为 85%,接触时间为 15 分钟,吸附剂用量为 2 gL,而其他实验条件与 TWFB 生物吸附剂相同。准二级动力学( > 0.99)模型拟合了吸附速率。并且,表明 Freundlich 等温模型( > 0.99)更适合实验数据。TWFB 和 UWFB 吸附的 Cr(VI) 的最大吸附量分别为 205.8 ± 10.1 和 72.85 ± 2.36 mgg。热力学参数表明,吸附是自发的(Δ < 0)、吸热的(Δ > 0)和熵驱动的(Δ > 0)。生成的 WFB 吸附剂也具有显著的循环利用潜力。经过五次再生和吸附循环后,它仍能保持对 Cr(VI) 离子 85.5%的良好修复效果。