Suppr超能文献

肺泡混合及多次吸入气雾剂对人体肺部颗粒沉积的影响。

Influence of alveolar mixing and multiple breaths of aerosol intake on particle deposition in the human lungs.

作者信息

Asgharian B, Price O, Borojeni A A T, Kuprat A P, Colby S, Singh R K, Gu W, Corley R A, Darquenne C

机构信息

Applied Research Associates, Arlington Division, Raleigh, NC, USA.

Department of Medicine, University of California, San Diego, CA, USA.

出版信息

J Aerosol Sci. 2022 Nov;166. doi: 10.1016/j.jaerosci.2022.106050. Epub 2022 Jul 19.

Abstract

Predictive dosimetry models play an important role in assessing health effect of inhaled particulate matter and in optimizing delivery of inhaled pharmaceutical aerosols. In this study, the commonly used 1D Multiple-Path Particle Dosimetry model (MPPD) was improved by including a mechanistically based model component for alveolar mixing of particles and by extending the model capabilities to account for multiple breaths of aerosol intake. These modifications increased the retained fraction of particles and consequently particle deposition predictions in the deep lung during tidal breathing. Comparison with an existing dataset (J. Aerosol Sci., 99:27-39, 2016) obtained under two breathing conditions referred to as slow and fast breathing showed significant differences in 1 μm particle deposition between predictions based on subject-specific breathing patterns and lung volume (slow: 30 ± 1%, fast: 21 ± 1%, (average ± standard deviation), N = 7) and measurements (slow: 43 ± 9%, fast: 30 ± 5%) when the prior version of MPPD (single breath and no mixing, J. Aerosol Sci., 151:105647, 2021) was used. Adding a mixing model and multiple breaths moved the predictions (slow: 34 ± 2%, fast:25 ± 2%) closer to the range of deposition measurements. For 2.9 μm particles, predictions from both the original (slow: 70 ± 2%, fast: 57 ± 2%) and the revised MPPD model (slow: 71 ± 2%, fast: 59 ± 3%) compared well with experiments (slow: 67 ± 8%, fast: 58 ± 10%). This was expected as suspended fraction of 2.9 μm particles was small and thus the addition of alveolar mixing and multi breath capability only slightly increased the retained fraction for particles of this size and greater. The revised 1D model improves dose predictions in the deep lung and support human risk assessment from exposure to airborne particles.

摘要

预测剂量学模型在评估吸入颗粒物的健康影响以及优化吸入药物气雾剂的递送方面发挥着重要作用。在本研究中,常用的一维多路径颗粒剂量学模型(MPPD)得到了改进,包括纳入了一个基于机制的颗粒肺泡混合模型组件,并扩展了模型功能以考虑多次呼吸的气溶胶吸入情况。这些修改增加了颗粒的滞留分数,从而提高了潮气呼吸期间深部肺脏中颗粒沉积的预测值。与在两种呼吸条件(称为慢呼吸和快呼吸)下获得的现有数据集(《气溶胶科学杂志》,99:27 - 39,2016)进行比较,结果表明,当使用MPPD的先前版本(单次呼吸且无混合,《气溶胶科学杂志》,151:105647,2021)时,基于个体特定呼吸模式和肺容积的预测(慢呼吸:30 ± 1%,快呼吸:21 ± 1%,(平均值 ± 标准差),N = 7)与测量值(慢呼吸:43 ± 9%,快呼吸:30 ± 5%)在1μm颗粒沉积方面存在显著差异。添加混合模型和多次呼吸后,预测值(慢呼吸:34 ± 2%,快呼吸:25 ± 2%)更接近沉积测量值范围。对于2.9μm颗粒,原始MPPD模型(慢呼吸:70 ± 2%,快呼吸:57 ± 2%)和修订后的MPPD模型(慢呼吸:71 ± 2%,快呼吸:59 ± 3%)的预测结果与实验结果(慢呼吸:67 ± 8%,快呼吸:58 ± 10%)相比吻合良好。这是预期的,因为2.9μm颗粒的悬浮分数较小,因此添加肺泡混合和多次呼吸能力只会略微增加该尺寸及更大尺寸颗粒的滞留分数。修订后的一维模型改进了深部肺脏中的剂量预测,并有助于对暴露于空气中颗粒的人体风险进行评估。

相似文献

1
Influence of alveolar mixing and multiple breaths of aerosol intake on particle deposition in the human lungs.
J Aerosol Sci. 2022 Nov;166. doi: 10.1016/j.jaerosci.2022.106050. Epub 2022 Jul 19.
5
Deposition of Particles in the Alveolar Airways: Inhalation and Breath-Hold with Pharmaceutical Aerosols.
J Aerosol Sci. 2015 Jan 1;79:15-30. doi: 10.1016/j.jaerosci.2014.09.003.
6
Development of an in vitro model to assess deposition of aerosol particles in a representative replica of the rat's respiratory tract.
J Aerosol Med Pulm Drug Deliv. 2012 Jun;25(3):169-78. doi: 10.1089/jamp.2011.0902. Epub 2012 Jan 26.
7
Respiratory Tract Deposition of E-Cigarette Particles.
Compr Physiol. 2022 Aug 12;12(4):3823-3832. doi: 10.1002/cphy.c210038.
8
Capturing the efficiency of vibrating mesh nebulizers: minimizing upper airway deposition.
J Aerosol Med Pulm Drug Deliv. 2014 Oct;27(5):341-8. doi: 10.1089/jamp.2014.1152. Epub 2014 Aug 8.
10
Artificial neural network prediction of aerosol deposition in human lungs.
Pharm Res. 2002 Aug;19(8):1130-6. doi: 10.1023/a:1019889907976.

引用本文的文献

2
Subject-Specific Multi-Scale Modeling of the Fate of Inhaled Aerosols.
J Aerosol Sci. 2025 Jan;183. doi: 10.1016/j.jaerosci.2024.106471. Epub 2024 Sep 19.
3
Non-local impact of distal airway constrictions on patterns of inhaled particle deposition.
R Soc Open Sci. 2024 Nov 6;11(11):241108. doi: 10.1098/rsos.241108. eCollection 2024 Nov.
4
The effects of airway disease on the deposition of inhaled drugs.
Expert Opin Drug Deliv. 2024 Aug;21(8):1175-1190. doi: 10.1080/17425247.2024.2392790. Epub 2024 Aug 19.
5
Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum.
Am J Physiol Heart Circ Physiol. 2024 Jul 1;327(1):H191-H220. doi: 10.1152/ajpheart.00055.2024. Epub 2024 May 17.
7
Lung-gut axis of microbiome alterations following co-exposure to ultrafine carbon black and ozone.
Part Fibre Toxicol. 2023 Apr 21;20(1):15. doi: 10.1186/s12989-023-00528-8.
8
In Silico Quantification of Intersubject Variability on Aerosol Deposition in the Oral Airway.
Pharmaceutics. 2023 Jan 3;15(1):160. doi: 10.3390/pharmaceutics15010160.

本文引用的文献

1
Total and regional deposition of inhaled aerosols in supine healthy subjects and subjects with mild-to-moderate COPD.
J Aerosol Sci. 2016 Sep;99:27-39. doi: 10.1016/j.jaerosci.2016.01.019. Epub 2016 Apr 30.
2
Deposition of Particles in the Alveolar Airways: Inhalation and Breath-Hold with Pharmaceutical Aerosols.
J Aerosol Sci. 2015 Jan 1;79:15-30. doi: 10.1016/j.jaerosci.2014.09.003.
3
Particle transport and deposition: basic physics of particle kinetics.
Compr Physiol. 2013 Oct;3(4):1437-71. doi: 10.1002/cphy.c100085.
4
5
Aerosol bolus dispersion in acinar airways--influence of gravity and airway asymmetry.
J Appl Physiol (1985). 2012 Aug;113(3):442-50. doi: 10.1152/japplphysiol.01549.2011. Epub 2012 Jun 7.
6
Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions.
J Appl Physiol (1985). 2011 May;110(5):1271-82. doi: 10.1152/japplphysiol.00735.2010. Epub 2011 Feb 17.
7
Inspiratory and expiratory aerosol deposition in the upper airway.
Inhal Toxicol. 2011 Feb;23(2):104-11. doi: 10.3109/08958378.2010.547535.
8
Aerosol Deposition in the Extrathoracic Region.
Aerosol Sci Technol. 2003;37(8):659-671. doi: 10.1080/02786820300906.
9
Gas and aerosol mixing in the acinus.
Respir Physiol Neurobiol. 2008 Nov 30;163(1-3):139-49. doi: 10.1016/j.resp.2008.02.010. Epub 2008 Feb 29.
10
Degree of throat deposition can explain the variability in lung deposition of inhaled drugs.
J Aerosol Med. 2006 Winter;19(4):473-83. doi: 10.1089/jam.2006.19.473.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验